Cargando…
Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma
BACKGROUND: Lung adenocarcinoma (LUAD) is the major subtype of lung cancer and the most lethal malignant disease worldwide. However, the molecular mechanisms underlying LUAD are not fully understood. METHODS: Four datasets (GSE118370, GSE85841, GSE43458 and GSE32863) were obtained from the gene expr...
Autores principales: | Guo, Tingting, Ma, Hongtao, Zhou, Yubai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626531/ https://www.ncbi.nlm.nih.gov/pubmed/31333911 http://dx.doi.org/10.7717/peerj.7313 |
Ejemplares similares
-
Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma
por: Yue, Cheng, et al.
Publicado: (2019) -
Development of a novel embryonic germline gene-related prognostic model of lung adenocarcinoma
por: Liu, Linjun, et al.
Publicado: (2021) -
Identification of HMMR as a prognostic biomarker for patients with lung adenocarcinoma via integrated bioinformatics analysis
por: Li, Zhaodong, et al.
Publicado: (2021) -
Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data
por: Macrander, Jason, et al.
Publicado: (2018) -
Identification of novel biomarkers and candidate small molecule drugs in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis of high‐throughput data
por: Zuo, Bin, et al.
Publicado: (2020)