Cargando…
Extraction of Cathepsin D-Like Protease from Neon Flying Squid (Ommastrephes bartramii) Viscera and Application in Antioxidant Hydrolysate Production
A protease from neon flying squid (Ommastrephes bartramii) viscera (SVCE3(f)) was partially purified by isoelectric solubilization/precipitation combined with ultra-membrane filtration (ISP-UMF). Two protein bands of 45 and 27 KDa were determined by SDS-PAGE assay. The protease characteristic of the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627090/ https://www.ncbi.nlm.nih.gov/pubmed/31212771 http://dx.doi.org/10.3390/biom9060228 |
Sumario: | A protease from neon flying squid (Ommastrephes bartramii) viscera (SVCE3(f)) was partially purified by isoelectric solubilization/precipitation combined with ultra-membrane filtration (ISP-UMF). Two protein bands of 45 and 27 KDa were determined by SDS-PAGE assay. The protease characteristic of the protein band of 45 KDa was confirmed using casein zymography analysis. The result of UPLC-ESI-MS/MS suggested that the band of 45 KDa could be a cathepsin D-like protease. This cathepsin D-like protease showed an optimum pH of 3.0 and optimum temperature of 60 °C when casein was used as s substrate. Furthermore, its protease activity was stable at 30–50 °C and under a pH range of 1.0–5.0, maintaining about 60% of its initial activity. SVCE3(f) can digest half-fin anchovy (Setipinna taty) to generate antioxidant hydrolysates (HAHp-SEs). The degree of hydrolysis (DH) of HAHp-SEs increased along with the hydrolysis time and reached stability after 60 min of digestion. HAHp-SEs(30) with relatively lower DH exhibited the highest DPPH radical scavenging activity as compared with other HAHp-SEs. However, a stronger hydroxyl radical scavenging activity and greater reducing power were observed for HAHp-SEs that underwent higher DH. Accordingly, the partially purified cathepsin D-like protease of neon flying squid viscera using ISP-UMF could have potential application in antioxidant hydrolysates production. |
---|