Cargando…
Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study
The purpose of this study was to determine the predictive power for treatment outcome of a machine-learning algorithm combining magnetic resonance imaging (MRI)-derived data in patients with sinonasal squamous cell carcinomas (SCCs). Thirty-six primary lesions in 36 patients were evaluated. Quantita...
Autores principales: | Fujima, Noriyuki, Shimizu, Yukie, Yoshida, Daisuke, Kano, Satoshi, Mizumachi, Takatsugu, Homma, Akihiro, Yasuda, Koichi, Onimaru, Rikiya, Sakai, Osamu, Kudo, Kohsuke, Shirato, Hiroki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627127/ https://www.ncbi.nlm.nih.gov/pubmed/31185611 http://dx.doi.org/10.3390/cancers11060800 |
Ejemplares similares
-
The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies
por: Fujima, Noriyuki, et al.
Publicado: (2019) -
A Retrospective Study of G-Tube Use in Japanese Patients Treated with Concurrent Chemoradiotherapy for Hypopharyngeal Cancer
por: Homma, Akihiro, et al.
Publicado: (2016) -
Utility of a Hybrid IVIM-DKI Model to Predict the Development of Distant Metastasis in Head and Neck Squamous Cell Carcinoma Patients
por: Fujima, Noriyuki, et al.
Publicado: (2017) -
Non-invasive prediction of the tumor growth rate using advanced diffusion models in head and neck squamous cell carcinoma patients
por: Fujima, Noriyuki, et al.
Publicado: (2017) -
Osteoradionecrosis of the hyoid bone after intra-arterial chemoradiotherapy for oropharyngeal cancer: MR imaging findings
por: Hatakeyama, Hiromitsu, et al.
Publicado: (2017)