Cargando…
The Polyubiquitin Gene MrUBI4 Is Required for Conidiation, Conidial Germination, and Stress Tolerance in the Filamentous Fungus Metarhizium robertsii
The polyubiquitin gene is a highly conserved open reading frame that encodes different numbers of tandem ubiquitin repeats from different species, which play important roles in different biological processes. Metarhizium robertsii is a fungal entomopathogen that is widely applied in the biological c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627135/ https://www.ncbi.nlm.nih.gov/pubmed/31146457 http://dx.doi.org/10.3390/genes10060412 |
Sumario: | The polyubiquitin gene is a highly conserved open reading frame that encodes different numbers of tandem ubiquitin repeats from different species, which play important roles in different biological processes. Metarhizium robertsii is a fungal entomopathogen that is widely applied in the biological control of pest insects. However, it is unclear whether the polyubiquitin gene is required for fungal development, stress tolerance, and virulence in the entomopathogenic fungus. In the present study, the polyubiquitin gene (MrUBI4, MAA_02160) was functionally characterized via gene deletion in M. robertsii. Compared to the control strains, the MrUBI4 deletion mutant showed delayed conidial germination and significantly decreased conidial yields (39% of the wild-type 14 days post-incubation). Correspondingly, the transcript levels of several genes from the central regulatory pathways associated with conidiation, including brlA, abaA, and wetA, were significantly downregulated, which indicated that MrUBI4 played an important role in asexual sporulation. Deletion of MrUBI4 especially resulted in increased sensitivity to ultraviolet (UV) and heat-shock stress based on conidial germination analysis between mutant and control strains. The significant increase in sensitivity to heat-shock was accompanied with reduced transcript levels of genes related to heat-shock protein (hsp), trehalose, and mannitol accumulation (tps, tpp, nth, and mpd) in the MrUBI4 deletion mutant. Deletion of MrUBI4 has no effect on fungal virulence. Altogether, MrUBI4 is involved in the regulation of conidiation, conidial germination, UV stress, and heat-shock response in M. robertsii. |
---|