Cargando…
Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells
Lactoferrin (LF) is known to modulate the bone anabolic effect. Previously, we and others reported that the effects of LF on the bone may be conferred by the stimulation of transforming growth factor β (TGF-β) signaling in the preosteoblast. However, the underlying molecular mechanisms of LF-induced...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627184/ https://www.ncbi.nlm.nih.gov/pubmed/31200471 http://dx.doi.org/10.3390/ijms20122880 |
_version_ | 1783434680035442688 |
---|---|
author | Li, Yixuan Zhang, Wei Ren, Fazheng Guo, Huiyuan |
author_facet | Li, Yixuan Zhang, Wei Ren, Fazheng Guo, Huiyuan |
author_sort | Li, Yixuan |
collection | PubMed |
description | Lactoferrin (LF) is known to modulate the bone anabolic effect. Previously, we and others reported that the effects of LF on the bone may be conferred by the stimulation of transforming growth factor β (TGF-β) signaling in the preosteoblast. However, the underlying molecular mechanisms of LF-induced osteogenic differentiation of mesenchymal stem cells (MSCs) has not been identified. In this study, we tested the hypothesis that the effects of LF on osteogenesis of MSCs required mediation by TGF-β Receptors and activating TGF-β signaling pathway. Using siRNA silencing technology, the knockdown of TGF-β Receptor II (TβRII) could significantly attenuate LF’s effect on the proliferation rate and alkaline phosphatase (ALP) activity of MSCs. It indicated that LF induced osteogenic activity that is dependent on TβRII in C3H10T1/2. Subsequently, it was shown that LF activated Smad2. Downregulating TGF-β Receptor I (TβRI) with SB431542 attenuated the expression of p-Smad2 and p-P38, also the LF-induced the osteogenic activity. Besides, the stimulation by LF on the expression of Osteocalcin (OCN), Osteopontin (OPN), Collagen-2a1 (Col2a1), and Fibroblast Growth Factor 2 (FGF2) were abolished by SB431542. These results confirmed that LF induced osteogenic activity though the TGF-β canonical and noncanonical signaling pathway. This study provided the first evidence of the signaling mechanisms of LF’s effect on osteogenesis in MSCs. |
format | Online Article Text |
id | pubmed-6627184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66271842019-07-19 Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells Li, Yixuan Zhang, Wei Ren, Fazheng Guo, Huiyuan Int J Mol Sci Article Lactoferrin (LF) is known to modulate the bone anabolic effect. Previously, we and others reported that the effects of LF on the bone may be conferred by the stimulation of transforming growth factor β (TGF-β) signaling in the preosteoblast. However, the underlying molecular mechanisms of LF-induced osteogenic differentiation of mesenchymal stem cells (MSCs) has not been identified. In this study, we tested the hypothesis that the effects of LF on osteogenesis of MSCs required mediation by TGF-β Receptors and activating TGF-β signaling pathway. Using siRNA silencing technology, the knockdown of TGF-β Receptor II (TβRII) could significantly attenuate LF’s effect on the proliferation rate and alkaline phosphatase (ALP) activity of MSCs. It indicated that LF induced osteogenic activity that is dependent on TβRII in C3H10T1/2. Subsequently, it was shown that LF activated Smad2. Downregulating TGF-β Receptor I (TβRI) with SB431542 attenuated the expression of p-Smad2 and p-P38, also the LF-induced the osteogenic activity. Besides, the stimulation by LF on the expression of Osteocalcin (OCN), Osteopontin (OPN), Collagen-2a1 (Col2a1), and Fibroblast Growth Factor 2 (FGF2) were abolished by SB431542. These results confirmed that LF induced osteogenic activity though the TGF-β canonical and noncanonical signaling pathway. This study provided the first evidence of the signaling mechanisms of LF’s effect on osteogenesis in MSCs. MDPI 2019-06-13 /pmc/articles/PMC6627184/ /pubmed/31200471 http://dx.doi.org/10.3390/ijms20122880 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Yixuan Zhang, Wei Ren, Fazheng Guo, Huiyuan Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title | Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title_full | Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title_fullStr | Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title_full_unstemmed | Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title_short | Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells |
title_sort | activation of tgf-β canonical and noncanonical signaling in bovine lactoferrin-induced osteogenic activity of c3h10t1/2 mesenchymal stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627184/ https://www.ncbi.nlm.nih.gov/pubmed/31200471 http://dx.doi.org/10.3390/ijms20122880 |
work_keys_str_mv | AT liyixuan activationoftgfbcanonicalandnoncanonicalsignalinginbovinelactoferrininducedosteogenicactivityofc3h10t12mesenchymalstemcells AT zhangwei activationoftgfbcanonicalandnoncanonicalsignalinginbovinelactoferrininducedosteogenicactivityofc3h10t12mesenchymalstemcells AT renfazheng activationoftgfbcanonicalandnoncanonicalsignalinginbovinelactoferrininducedosteogenicactivityofc3h10t12mesenchymalstemcells AT guohuiyuan activationoftgfbcanonicalandnoncanonicalsignalinginbovinelactoferrininducedosteogenicactivityofc3h10t12mesenchymalstemcells |