Cargando…

RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo

Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jingha...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaohui, Zou, Wenbin, Yu, Hailiang, Lin, Yuxin, Dai, Guojun, Zhang, Tao, Zhang, Genxi, Xie, Kaizhou, Wang, Jinyu, Shi, Huiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627390/
https://www.ncbi.nlm.nih.gov/pubmed/31159150
http://dx.doi.org/10.3390/genes10060420
Descripción
Sumario:Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jinghai yellow chickens infected with E. tenella, the molecular response process, and the immune response mechanism during coccidial infection, RNA-seq was used to analyze the cecal tissues of an E. tenella infection group (JS) and an uninfected group (JC) on the seventh day post-infection. The DEGs were screened by functional and pathway enrichment analyses. The results indicated that there were 5477 DEGs (p-value < 0.05) between the JS and the JC groups, of which 2942 were upregulated, and 2535 were downregulated. GO analysis indicated that the top 30 significantly enriched GO terms mainly involved signal transduction, angiogenesis, inflammatory response, and blood vessel development. KEGG analysis revealed that the top significantly enriched signaling pathways included focal adhesion, extracellular matrix–receptor interaction, and peroxisome proliferator-activated receptor. The key DEGs in these pathways included ANGPTL4, ACSL5, VEGFC, MAPK10, and CD44. These genes play an important role in the infection of E. tenella. This study further enhances our understanding of the molecular mechanism of E. tenella infection in chickens.