Cargando…

Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli

The vetiver essential oil from Chrysopogon zizanioides contains fragrant sesquiterpenes used widely in the formulation of nearly 20% of men’s cosmetics. The growing demand and issues in the supply have raised interest in the microbial production of the sesquiterpene khusimol, the main compound of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguilar, Francisco, Scheper, Thomas, Beutel, Sascha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627501/
https://www.ncbi.nlm.nih.gov/pubmed/31238595
http://dx.doi.org/10.3390/genes10060478
_version_ 1783434753252261888
author Aguilar, Francisco
Scheper, Thomas
Beutel, Sascha
author_facet Aguilar, Francisco
Scheper, Thomas
Beutel, Sascha
author_sort Aguilar, Francisco
collection PubMed
description The vetiver essential oil from Chrysopogon zizanioides contains fragrant sesquiterpenes used widely in the formulation of nearly 20% of men’s cosmetics. The growing demand and issues in the supply have raised interest in the microbial production of the sesquiterpene khusimol, the main compound of the vetiver essential oil due to its woody smell. In this study, we engineered the biosynthetic pathway for the production of (+)-zizaene, the immediate precursor of khusimol. A systematic approach of metabolic engineering in Escherichia coli was applied to modulate the critical bottlenecks of the metabolic flux towards (+)-zizaene. Initially, production of (+)-zizaene was possible with the endogenous methylerythritol phosphate pathway and the codon-optimized zizaene synthase (ZS). Raising the precursor E,E-farnesyl diphosphate supply through the mevalonate pathway improved the (+)-zizaene titers 2.7-fold, although a limitation of the ZS supply was observed. To increase the ZS supply, distinct promoters were tested for the expression of the ZS gene, which augmented 7.2-fold in the (+)-zizaene titers. Final metabolic enhancement for the ZS supply by using a multi-plasmid strain harboring multiple copies of the ZS gene improved the (+)-zizaene titers 1.3-fold. The optimization of the fermentation conditions increased the (+)-zizaene titers 2.2-fold, achieving the highest (+)-zizaene titer of 25.09 mg L(−1). This study provides an alternative strategy to enhance the terpene synthase supply for the engineering of isoprenoids. Moreover, it demonstrates the development of a novel microbial platform for the sustainable production of fragrant molecules for the cosmetic industry.
format Online
Article
Text
id pubmed-6627501
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-66275012019-07-23 Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli Aguilar, Francisco Scheper, Thomas Beutel, Sascha Genes (Basel) Article The vetiver essential oil from Chrysopogon zizanioides contains fragrant sesquiterpenes used widely in the formulation of nearly 20% of men’s cosmetics. The growing demand and issues in the supply have raised interest in the microbial production of the sesquiterpene khusimol, the main compound of the vetiver essential oil due to its woody smell. In this study, we engineered the biosynthetic pathway for the production of (+)-zizaene, the immediate precursor of khusimol. A systematic approach of metabolic engineering in Escherichia coli was applied to modulate the critical bottlenecks of the metabolic flux towards (+)-zizaene. Initially, production of (+)-zizaene was possible with the endogenous methylerythritol phosphate pathway and the codon-optimized zizaene synthase (ZS). Raising the precursor E,E-farnesyl diphosphate supply through the mevalonate pathway improved the (+)-zizaene titers 2.7-fold, although a limitation of the ZS supply was observed. To increase the ZS supply, distinct promoters were tested for the expression of the ZS gene, which augmented 7.2-fold in the (+)-zizaene titers. Final metabolic enhancement for the ZS supply by using a multi-plasmid strain harboring multiple copies of the ZS gene improved the (+)-zizaene titers 1.3-fold. The optimization of the fermentation conditions increased the (+)-zizaene titers 2.2-fold, achieving the highest (+)-zizaene titer of 25.09 mg L(−1). This study provides an alternative strategy to enhance the terpene synthase supply for the engineering of isoprenoids. Moreover, it demonstrates the development of a novel microbial platform for the sustainable production of fragrant molecules for the cosmetic industry. MDPI 2019-06-24 /pmc/articles/PMC6627501/ /pubmed/31238595 http://dx.doi.org/10.3390/genes10060478 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Aguilar, Francisco
Scheper, Thomas
Beutel, Sascha
Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title_full Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title_fullStr Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title_full_unstemmed Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title_short Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli
title_sort modulating the precursor and terpene synthase supply for the whole-cell biocatalytic production of the sesquiterpene (+)-zizaene in a pathway engineered e. coli
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627501/
https://www.ncbi.nlm.nih.gov/pubmed/31238595
http://dx.doi.org/10.3390/genes10060478
work_keys_str_mv AT aguilarfrancisco modulatingtheprecursorandterpenesynthasesupplyforthewholecellbiocatalyticproductionofthesesquiterpenezizaeneinapathwayengineeredecoli
AT scheperthomas modulatingtheprecursorandterpenesynthasesupplyforthewholecellbiocatalyticproductionofthesesquiterpenezizaeneinapathwayengineeredecoli
AT beutelsascha modulatingtheprecursorandterpenesynthasesupplyforthewholecellbiocatalyticproductionofthesesquiterpenezizaeneinapathwayengineeredecoli