Cargando…
White and gray matter brain development in children and young adults with phenylketonuria
Phenylketonuria (PKU) is a recessive disorder characterized by disruption in the metabolism of the amino acid phenylalanine (Phe). Prior research indicates that individuals with PKU have substantial white matter (WM) compromise. Much less is known about gray matter (GM) in PKU, but a small body of r...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627563/ https://www.ncbi.nlm.nih.gov/pubmed/31491833 http://dx.doi.org/10.1016/j.nicl.2019.101916 |
_version_ | 1783434765715636224 |
---|---|
author | Hawks, Zoë Hood, Anna M. Lerman-Sinkoff, Dov B. Shimony, Joshua S. Rutlin, Jerrel Lagoni, Daniel Grange, Dorothy K. White, Desirée A. |
author_facet | Hawks, Zoë Hood, Anna M. Lerman-Sinkoff, Dov B. Shimony, Joshua S. Rutlin, Jerrel Lagoni, Daniel Grange, Dorothy K. White, Desirée A. |
author_sort | Hawks, Zoë |
collection | PubMed |
description | Phenylketonuria (PKU) is a recessive disorder characterized by disruption in the metabolism of the amino acid phenylalanine (Phe). Prior research indicates that individuals with PKU have substantial white matter (WM) compromise. Much less is known about gray matter (GM) in PKU, but a small body of research suggests volumetric differences compared to controls. To date, developmental trajectories of GM structure in individuals with PKU have not been examined, nor have trajectories of WM and GM been examined within a single study. To address this gap in the literature, we compared longitudinal brain development over a three-year period in individuals with PKU (n = 35; 18 male) and typically-developing controls (n = 71; 35 male) aged 7–21 years. Using diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI), we observed whole-brain and regional WM differences between individuals with PKU and controls, which were often exacerbated with increasing age. In marked contrast with trajectories of WM development, trajectories of GM development did not differ between individuals with PKU and controls, indicating that neuropathology in PKU is more prominent in WM than GM. Within individuals with PKU, mediation analyses revealed that whole-brain mean diffusivity (MD) and regional MD in the corpus callosum and centrum semiovale mediated the relationship between dietary treatment compliance (i.e., Phe control) and executive abilities, suggesting a plausible neurobiological mechanism by which Phe control may influence cognitive outcomes. Our findings clarify the specificity, timing, and cognitive consequences of whole-brain and regional WM pathology, with implications for treatment and research in PKU. |
format | Online Article Text |
id | pubmed-6627563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66275632019-07-23 White and gray matter brain development in children and young adults with phenylketonuria Hawks, Zoë Hood, Anna M. Lerman-Sinkoff, Dov B. Shimony, Joshua S. Rutlin, Jerrel Lagoni, Daniel Grange, Dorothy K. White, Desirée A. Neuroimage Clin Regular Article Phenylketonuria (PKU) is a recessive disorder characterized by disruption in the metabolism of the amino acid phenylalanine (Phe). Prior research indicates that individuals with PKU have substantial white matter (WM) compromise. Much less is known about gray matter (GM) in PKU, but a small body of research suggests volumetric differences compared to controls. To date, developmental trajectories of GM structure in individuals with PKU have not been examined, nor have trajectories of WM and GM been examined within a single study. To address this gap in the literature, we compared longitudinal brain development over a three-year period in individuals with PKU (n = 35; 18 male) and typically-developing controls (n = 71; 35 male) aged 7–21 years. Using diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI), we observed whole-brain and regional WM differences between individuals with PKU and controls, which were often exacerbated with increasing age. In marked contrast with trajectories of WM development, trajectories of GM development did not differ between individuals with PKU and controls, indicating that neuropathology in PKU is more prominent in WM than GM. Within individuals with PKU, mediation analyses revealed that whole-brain mean diffusivity (MD) and regional MD in the corpus callosum and centrum semiovale mediated the relationship between dietary treatment compliance (i.e., Phe control) and executive abilities, suggesting a plausible neurobiological mechanism by which Phe control may influence cognitive outcomes. Our findings clarify the specificity, timing, and cognitive consequences of whole-brain and regional WM pathology, with implications for treatment and research in PKU. Elsevier 2019-07-02 /pmc/articles/PMC6627563/ /pubmed/31491833 http://dx.doi.org/10.1016/j.nicl.2019.101916 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Hawks, Zoë Hood, Anna M. Lerman-Sinkoff, Dov B. Shimony, Joshua S. Rutlin, Jerrel Lagoni, Daniel Grange, Dorothy K. White, Desirée A. White and gray matter brain development in children and young adults with phenylketonuria |
title | White and gray matter brain development in children and young adults with phenylketonuria |
title_full | White and gray matter brain development in children and young adults with phenylketonuria |
title_fullStr | White and gray matter brain development in children and young adults with phenylketonuria |
title_full_unstemmed | White and gray matter brain development in children and young adults with phenylketonuria |
title_short | White and gray matter brain development in children and young adults with phenylketonuria |
title_sort | white and gray matter brain development in children and young adults with phenylketonuria |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627563/ https://www.ncbi.nlm.nih.gov/pubmed/31491833 http://dx.doi.org/10.1016/j.nicl.2019.101916 |
work_keys_str_mv | AT hawkszoe whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT hoodannam whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT lermansinkoffdovb whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT shimonyjoshuas whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT rutlinjerrel whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT lagonidaniel whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT grangedorothyk whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria AT whitedesireea whiteandgraymatterbraindevelopmentinchildrenandyoungadultswithphenylketonuria |