Cargando…
Proprietary Algorithms for Polygenic Risk: Protecting Scientific Innovation or Hiding the Lack of It?
Direct-to-consumer genetic testing companies aim to predict the risks of complex diseases using proprietary algorithms. Companies keep algorithms as trade secrets for competitive advantage, but a market that thrives on the premise that customers can make their own decisions about genetic testing sho...
Autor principal: | Janssens, A. Cecile J.W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627729/ https://www.ncbi.nlm.nih.gov/pubmed/31200546 http://dx.doi.org/10.3390/genes10060448 |
Ejemplares similares
-
Evaluation of Polygenic Risk Models Using Multiple Performance
Measures: A Critical Assessment of Discordant Results
por: Martens, Forike K., et al.
Publicado: (2018) -
Hitting HIV where it hides
por: Dayton, Andrew I
Publicado: (2008) -
Responding to a new generation of proprietary study resources in medical education
por: O’Hanlon, Robin, et al.
Publicado: (2019) -
Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences
por: Rosenberg, Noah A, et al.
Publicado: (2018) -
Validity of polygenic risk scores: are we measuring what we think we are?
por: Janssens, A Cecile J W
Publicado: (2019)