Cargando…
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations
Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on one population can predict MCI/AD diagnosis of other populations. This study...
Autores principales: | Wee, Chong-Yaw, Liu, Chaoqiang, Lee, Annie, Poh, Joann S., Ji, Hui, Qiu, Anqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627731/ https://www.ncbi.nlm.nih.gov/pubmed/31491832 http://dx.doi.org/10.1016/j.nicl.2019.101929 |
Ejemplares similares
-
AD-NET: Age-adjust neural network for improved MCI to AD conversion prediction
por: Gao, Fei, et al.
Publicado: (2020) -
Interactive versus additive relationships between regional cortical thinning and amyloid burden in predicting clinical decline in mild AD and MCI individuals
por: d'Oleire Uquillas, Federico, et al.
Publicado: (2017) -
Predicting diagnosis 4 years prior to Alzheimer’s disease incident
por: Qiu, Anqi, et al.
Publicado: (2022) -
Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD
por: Richter, Nils, et al.
Publicado: (2019) -
Heterogeneity of Tau Deposition and Microvascular Involvement in MCI and AD
por: Bryant, Annie G., et al.
Publicado: (2021)