Cargando…
Pharmacological Properties of the Type 1 Tyramine Receptor in the Diamondback Moth, Plutella xylostella
Tyramine receptors (TARs) can be activated by tyramine (TA) or octopamine (OA) and have been shown to be related to physiological regulation (e.g., gustatory responsiveness, social organization, and learning behavior) in a range of insect species. A tyramine receptor gene in Plutella xylostella, Pxt...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627746/ https://www.ncbi.nlm.nih.gov/pubmed/31212951 http://dx.doi.org/10.3390/ijms20122953 |
Sumario: | Tyramine receptors (TARs) can be activated by tyramine (TA) or octopamine (OA) and have been shown to be related to physiological regulation (e.g., gustatory responsiveness, social organization, and learning behavior) in a range of insect species. A tyramine receptor gene in Plutella xylostella, Pxtar1, was cloned and stably expressed in the HEK-293 cell line. Pharmacological properties and expression profile of Pxtar1 were also analyzed. Tyramine could activate the PxTAR1 receptor, increasing the intracellular Ca(2+) concentration ((Ca(2+))i) at an EC50 of 13.1 nM and reducing forskolin (10 μM)-stimulated intracellular cAMP concentration ((cAMP)i) at an IC(50) of 446 nM. DPMF (a metabolite of amitraz) and L(-)-carvone (an essential oil) were found to act as PxTAR1 receptor agonists. Conversely, yohimbine and mianserin had significant antagonistic effects on PxTAR1. In both larvae and adults, Pxtar1 had the highest expression in the head capsule and expression of Pxtar1 was higher in male than in female reproductive organs. This study reveals the temporal and spatial differences and pharmacological properties of Pxtar1 in P. xylostella and provides a strategy for screening insecticidal compounds that target PxTAR1. |
---|