Cargando…
Visual Interpretation of Convolutional Neural Network Predictions in Classifying Medical Image Modalities
Deep learning (DL) methods are increasingly being applied for developing reliable computer-aided detection (CADe), diagnosis (CADx), and information retrieval algorithms. However, challenges in interpreting and explaining the learned behavior of the DL models hinders their adoption and use in real-w...
Autores principales: | Kim, Incheol, Rajaraman, Sivaramakrishnan, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627892/ https://www.ncbi.nlm.nih.gov/pubmed/30987172 http://dx.doi.org/10.3390/diagnostics9020038 |
Ejemplares similares
-
Detection and visualization of abnormality in chest radiographs using modality-specific convolutional neural network ensembles
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
Visualization and Interpretation of Convolutional Neural Network Predictions in Detecting Pneumonia in Pediatric Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2018) -
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2019) -
Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Novel loss functions for ensemble-based medical image classification
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021)