Cargando…
False Discovery Rate Control in Cancer Biomarker Selection Using Knockoffs
The discovery of biomarkers that are informative for cancer risk assessment, diagnosis, prognosis and treatment predictions is crucial. Recent advances in high-throughput genomics make it plausible to select biomarkers from the vast number of human genes in an unbiased manner. Yet, control of false...
Autores principales: | Shen, Arlina, Fu, Han, He, Kevin, Jiang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628039/ https://www.ncbi.nlm.nih.gov/pubmed/31146393 http://dx.doi.org/10.3390/cancers11060744 |
Ejemplares similares
-
Aggregating Knockoffs for False Discovery Rate Control with an Application to Gut Microbiome Data
por: Xie, Fang, et al.
Publicado: (2021) -
False discovery rate control in cancer biomarker selection
por: Li, Zhaoming
Publicado: (2023) -
Bayesian variable selection using Knockoffs with applications to genomics
por: Yap, Jurel K., et al.
Publicado: (2022) -
An embedded gene selection method using knockoffs optimizing neural network
por: Guo, Juncheng, et al.
Publicado: (2020) -
Null-free False Discovery Rate Control Using Decoy Permutations
por: He, Kun, et al.
Publicado: (2022)