Cargando…

A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4-d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor

Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells’ membran...

Descripción completa

Detalles Bibliográficos
Autores principales: Fallacara, Anna Lucia, Zamperini, Claudio, Podolski-Renić, Ana, Dinić, Jelena, Stanković, Tijana, Stepanović, Marija, Mancini, Arianna, Rango, Enrico, Iovenitti, Giulia, Molinari, Alessio, Bugli, Francesca, Sanguinetti, Maurizio, Torelli, Riccardo, Martini, Maurizio, Maccari, Laura, Valoti, Massimo, Dreassi, Elena, Botta, Maurizio, Pešić, Milica, Schenone, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628362/
https://www.ncbi.nlm.nih.gov/pubmed/31248184
http://dx.doi.org/10.3390/cancers11060848
Descripción
Sumario:Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells’ membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.