Cargando…

Enabling microbial syringol conversion through structure-guided protein engineering

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables...

Descripción completa

Detalles Bibliográficos
Autores principales: Machovina, Melodie M., Mallinson, Sam J. B., Knott, Brandon C., Meyers, Alexander W., Garcia-Borràs, Marc, Bu, Lintao, Gado, Japheth E., Oliver, April, Schmidt, Graham P., Hinchen, Daniel J., Crowley, Michael F., Johnson, Christopher W., Neidle, Ellen L., Payne, Christina M., Houk, Kendall N., Beckham, Gregg T., McGeehan, John E., DuBois, Jennifer L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628648/
https://www.ncbi.nlm.nih.gov/pubmed/31235604
http://dx.doi.org/10.1073/pnas.1820001116
_version_ 1783435002595246080
author Machovina, Melodie M.
Mallinson, Sam J. B.
Knott, Brandon C.
Meyers, Alexander W.
Garcia-Borràs, Marc
Bu, Lintao
Gado, Japheth E.
Oliver, April
Schmidt, Graham P.
Hinchen, Daniel J.
Crowley, Michael F.
Johnson, Christopher W.
Neidle, Ellen L.
Payne, Christina M.
Houk, Kendall N.
Beckham, Gregg T.
McGeehan, John E.
DuBois, Jennifer L.
author_facet Machovina, Melodie M.
Mallinson, Sam J. B.
Knott, Brandon C.
Meyers, Alexander W.
Garcia-Borràs, Marc
Bu, Lintao
Gado, Japheth E.
Oliver, April
Schmidt, Graham P.
Hinchen, Daniel J.
Crowley, Michael F.
Johnson, Christopher W.
Neidle, Ellen L.
Payne, Christina M.
Houk, Kendall N.
Beckham, Gregg T.
McGeehan, John E.
DuBois, Jennifer L.
author_sort Machovina, Melodie M.
collection PubMed
description Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.
format Online
Article
Text
id pubmed-6628648
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-66286482019-07-22 Enabling microbial syringol conversion through structure-guided protein engineering Machovina, Melodie M. Mallinson, Sam J. B. Knott, Brandon C. Meyers, Alexander W. Garcia-Borràs, Marc Bu, Lintao Gado, Japheth E. Oliver, April Schmidt, Graham P. Hinchen, Daniel J. Crowley, Michael F. Johnson, Christopher W. Neidle, Ellen L. Payne, Christina M. Houk, Kendall N. Beckham, Gregg T. McGeehan, John E. DuBois, Jennifer L. Proc Natl Acad Sci U S A PNAS Plus Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds. National Academy of Sciences 2019-07-09 2019-06-24 /pmc/articles/PMC6628648/ /pubmed/31235604 http://dx.doi.org/10.1073/pnas.1820001116 Text en Copyright © 2019 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle PNAS Plus
Machovina, Melodie M.
Mallinson, Sam J. B.
Knott, Brandon C.
Meyers, Alexander W.
Garcia-Borràs, Marc
Bu, Lintao
Gado, Japheth E.
Oliver, April
Schmidt, Graham P.
Hinchen, Daniel J.
Crowley, Michael F.
Johnson, Christopher W.
Neidle, Ellen L.
Payne, Christina M.
Houk, Kendall N.
Beckham, Gregg T.
McGeehan, John E.
DuBois, Jennifer L.
Enabling microbial syringol conversion through structure-guided protein engineering
title Enabling microbial syringol conversion through structure-guided protein engineering
title_full Enabling microbial syringol conversion through structure-guided protein engineering
title_fullStr Enabling microbial syringol conversion through structure-guided protein engineering
title_full_unstemmed Enabling microbial syringol conversion through structure-guided protein engineering
title_short Enabling microbial syringol conversion through structure-guided protein engineering
title_sort enabling microbial syringol conversion through structure-guided protein engineering
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628648/
https://www.ncbi.nlm.nih.gov/pubmed/31235604
http://dx.doi.org/10.1073/pnas.1820001116
work_keys_str_mv AT machovinamelodiem enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT mallinsonsamjb enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT knottbrandonc enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT meyersalexanderw enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT garciaborrasmarc enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT bulintao enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT gadojaphethe enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT oliverapril enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT schmidtgrahamp enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT hinchendanielj enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT crowleymichaelf enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT johnsonchristopherw enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT neidleellenl enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT paynechristinam enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT houkkendalln enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT beckhamgreggt enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT mcgeehanjohne enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering
AT duboisjenniferl enablingmicrobialsyringolconversionthroughstructureguidedproteinengineering