Cargando…

Cyanobacterial viruses exhibit diurnal rhythms during infection

As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the maj...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Riyue, Liu, Yaxin, Chen, Yue, Zhan, Yuanchao, Zeng, Qinglu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628666/
https://www.ncbi.nlm.nih.gov/pubmed/31235591
http://dx.doi.org/10.1073/pnas.1819689116
Descripción
Sumario:As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.