Cargando…
Hardness of Polycrystalline Wurtzite Boron Nitride (wBN) Compacts
Wurtzite boron nitride (wBN), due to its superior properties and many potential practical and scientific applications, such as ideal machining/cutting/milling ferrous and carbide materials, especially as an ideal dielectric substrate material for optical, electronic, and 2-D graphene-based devices,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629673/ https://www.ncbi.nlm.nih.gov/pubmed/31308449 http://dx.doi.org/10.1038/s41598-019-46709-4 |
Sumario: | Wurtzite boron nitride (wBN), due to its superior properties and many potential practical and scientific applications, such as ideal machining/cutting/milling ferrous and carbide materials, especially as an ideal dielectric substrate material for optical, electronic, and 2-D graphene-based devices, has recently attracted much attention from both academic and industrial fields. Despite decades of research, there is an ongoing debate about if the single-phase wBN is harder than diamond because of the difficulty to make pure wBN material. Here we report the successful synthesis of pure single-phase polycrystalline wurtzite-type boron nitride (wBN) bulk material by using wBN powder as a starting material with a well-controlled process under ultra-high pressure and high temperature. The cubic boron nitride (cBN) was also successfully prepared for the first time from wBN starting material for comparison and verification. The X-ray diffraction (XRD) and TEM clearly confirmed that a pure single-phase wBN compact was produced. The microstructure and mechanical properties including Vickers hardness, fracture toughness, and thermal stability for the pure single-phase wBN was first evaluated. |
---|