Cargando…
Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress
Cadmium (Cd) is highly toxic to living organisms. This study aimed to elucidate the regulation of gene expression in rice shoots under Cd stress. Rice plants were exposed to 0, 50, 75, 100 μmol/L CdCl(2) in hydroponic culture for 7 d. Transcriptional changes in rice shoots were examined by transcrip...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629703/ https://www.ncbi.nlm.nih.gov/pubmed/31308454 http://dx.doi.org/10.1038/s41598-019-46684-w |
Sumario: | Cadmium (Cd) is highly toxic to living organisms. This study aimed to elucidate the regulation of gene expression in rice shoots under Cd stress. Rice plants were exposed to 0, 50, 75, 100 μmol/L CdCl(2) in hydroponic culture for 7 d. Transcriptional changes in rice shoots were examined by transcriptome sequencing techniques. A total of 2197 DEGs (987 up-regulated and 1210 down-regulated) were detected in rice shoots under the exposure of 75 μmol/L CdCl(2). GO and KEGG enrichment analyses showed that genes encoding auxin-responsive protein IAA and peroxidase were up-regulated, while genes encoding proteins involved in signal transduction, including TIFY family, ERF and bZIP were down-regulated. Abundant ROS related terms were also identified and grouped into significantly differentially expressed GO terms, including oxidoreductase activity, catalytic activity, oxidation-reduction process, confirming the enhanced oxidative stress of Cd. Genes encoding photosystem I reaction center subunit and photosynthetic NDH subunit of luminal location were up-regulated in pathway of energy metabolism, suggesting an interference of photosynthesis by Cd stress. Our results improve the understanding of the complex molecular responsive mechanisms of rice shoots under Cd stress. |
---|