Cargando…
Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen
Sugar transport and partitioning play key roles in the regulation of plant development and responses to biotic and abiotic factors. During plant/pathogen interactions, there is a competition for sugar that is controlled by membrane transporters and their regulation is decisive for the outcome of the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629970/ https://www.ncbi.nlm.nih.gov/pubmed/31354761 http://dx.doi.org/10.3389/fpls.2019.00884 |
_version_ | 1783435199057494016 |
---|---|
author | Meteier, Eloïse La Camera, Sylvain Goddard, Mary-Lorène Laloue, Hélène Mestre, Pere Chong, Julie |
author_facet | Meteier, Eloïse La Camera, Sylvain Goddard, Mary-Lorène Laloue, Hélène Mestre, Pere Chong, Julie |
author_sort | Meteier, Eloïse |
collection | PubMed |
description | Sugar transport and partitioning play key roles in the regulation of plant development and responses to biotic and abiotic factors. During plant/pathogen interactions, there is a competition for sugar that is controlled by membrane transporters and their regulation is decisive for the outcome of the interaction. SWEET sugar transporters are the targets of extracellular pathogens, which modify their expression to acquire the sugars necessary to their growth (Chen et al., 2010). The regulation of carbon allocation and sugar partitioning in the interaction between grapevine (Vitis vinifera) and its pathogens is poorly understood. We previously characterized the SWEET family in V. vinifera and showed that SWEET4 could be involved in resistance to the necrotrophic fungus Botrytis cinerea in Arabidopsis (Chong et al., 2014). To study the role of VvSWEET4 in grapevine, we produced V. vinifera cv. Syrah hairy roots overexpressing VvSWEET4 under the control of the CaMV 35S promoter (VvSWEET4(OX)). High levels of VvSWEET4 expression in hairy roots resulted in enhanced growth on media containing glucose or sucrose and increased contents in glucose and fructose. Sugar uptake assays further showed an improved glucose absorption in VvSWEET4 overexpressors. In parallel, we observed that VvSWEET4 expression was significantly induced after infection of wild type grapevine hairy roots with Pythium irregulare, a soilborne necrotrophic pathogen. Importantly, grapevine hairy roots overexpressing VvSWEET4 exhibited an improved resistance level to P. irregulare infection. This resistance phenotype was associated with higher glucose pools in roots after infection, higher constitutive expression of several genes involved in flavonoid biosynthesis, and higher flavanol contents. We propose that high sugar levels in VvSWEET4(OX) hairy roots provides a better support to the increased energy demand during pathogen infection. In addition, high sugar levels promote biosynthesis of flavonoids with antifungal properties. Overall, this work highlights the key role of sugar transport mediated by SWEET transporters for secondary metabolism regulation and pathogen resistance in grapevine. |
format | Online Article Text |
id | pubmed-6629970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66299702019-07-26 Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen Meteier, Eloïse La Camera, Sylvain Goddard, Mary-Lorène Laloue, Hélène Mestre, Pere Chong, Julie Front Plant Sci Plant Science Sugar transport and partitioning play key roles in the regulation of plant development and responses to biotic and abiotic factors. During plant/pathogen interactions, there is a competition for sugar that is controlled by membrane transporters and their regulation is decisive for the outcome of the interaction. SWEET sugar transporters are the targets of extracellular pathogens, which modify their expression to acquire the sugars necessary to their growth (Chen et al., 2010). The regulation of carbon allocation and sugar partitioning in the interaction between grapevine (Vitis vinifera) and its pathogens is poorly understood. We previously characterized the SWEET family in V. vinifera and showed that SWEET4 could be involved in resistance to the necrotrophic fungus Botrytis cinerea in Arabidopsis (Chong et al., 2014). To study the role of VvSWEET4 in grapevine, we produced V. vinifera cv. Syrah hairy roots overexpressing VvSWEET4 under the control of the CaMV 35S promoter (VvSWEET4(OX)). High levels of VvSWEET4 expression in hairy roots resulted in enhanced growth on media containing glucose or sucrose and increased contents in glucose and fructose. Sugar uptake assays further showed an improved glucose absorption in VvSWEET4 overexpressors. In parallel, we observed that VvSWEET4 expression was significantly induced after infection of wild type grapevine hairy roots with Pythium irregulare, a soilborne necrotrophic pathogen. Importantly, grapevine hairy roots overexpressing VvSWEET4 exhibited an improved resistance level to P. irregulare infection. This resistance phenotype was associated with higher glucose pools in roots after infection, higher constitutive expression of several genes involved in flavonoid biosynthesis, and higher flavanol contents. We propose that high sugar levels in VvSWEET4(OX) hairy roots provides a better support to the increased energy demand during pathogen infection. In addition, high sugar levels promote biosynthesis of flavonoids with antifungal properties. Overall, this work highlights the key role of sugar transport mediated by SWEET transporters for secondary metabolism regulation and pathogen resistance in grapevine. Frontiers Media S.A. 2019-07-09 /pmc/articles/PMC6629970/ /pubmed/31354761 http://dx.doi.org/10.3389/fpls.2019.00884 Text en Copyright © 2019 Meteier, La Camera, Goddard, Laloue, Mestre and Chong. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Meteier, Eloïse La Camera, Sylvain Goddard, Mary-Lorène Laloue, Hélène Mestre, Pere Chong, Julie Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title | Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title_full | Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title_fullStr | Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title_full_unstemmed | Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title_short | Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen |
title_sort | overexpression of the vvsweet4 transporter in grapevine hairy roots increases sugar transport and contents and enhances resistance to pythium irregulare, a soilborne pathogen |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629970/ https://www.ncbi.nlm.nih.gov/pubmed/31354761 http://dx.doi.org/10.3389/fpls.2019.00884 |
work_keys_str_mv | AT meteiereloise overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen AT lacamerasylvain overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen AT goddardmarylorene overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen AT lalouehelene overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen AT mestrepere overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen AT chongjulie overexpressionofthevvsweet4transporteringrapevinehairyrootsincreasessugartransportandcontentsandenhancesresistancetopythiumirregulareasoilbornepathogen |