Cargando…
Effect of cylinder-liner rotation on wear rate: An experimental study
In rotating cylinder-piston system, the largest losses source is frictional losses, accounting for 50% of the total frictional losses, thus it is important to optimize. Effect of incremental rotation of a cylinder liner on its wear rate was investigated. The engine speed, load and the cylinder rotat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630038/ https://www.ncbi.nlm.nih.gov/pubmed/31341993 http://dx.doi.org/10.1016/j.heliyon.2019.e02065 |
Sumario: | In rotating cylinder-piston system, the largest losses source is frictional losses, accounting for 50% of the total frictional losses, thus it is important to optimize. Effect of incremental rotation of a cylinder liner on its wear rate was investigated. The engine speed, load and the cylinder rotating angle were the main parameter. The results showed that the wear rate may be reduced to the half simply by rotating cylinder liner every six hours’ time interval of working. The test was carried out in pairs using a piston cylinder with movable liner and compared to a standard cylinder liner (fixed liner). Angles of 60(o), 120(o), 180(o), 240(o), and 300(o) were used for incremental movement. The same operating conditions for two cylinders were maintained for the purpose of comparison. Beneficial effects of reducing the wear rate for all components of the piston-cylinder arrangement associated with incremental rotational movement of a cylinder linear were noticed. A decrease in wear rate was obvious in the cylinder liner in rotation angles of 120(o) and 240(o) and it is almost one-fourth of the wear that occurs in the stationary cylinder liner. |
---|