Cargando…
Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity
PURPOSE: Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are representative disorders of dementia of the elderly and the neuroimaging has contributed to early diagnosis by estimation of alterations of brain volume, blood flow and metabolism. A brain network analysis by MR imaging (MR co...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630050/ https://www.ncbi.nlm.nih.gov/pubmed/30504639 http://dx.doi.org/10.2463/mrms.mp.2018-0091 |
_version_ | 1783435217566957568 |
---|---|
author | Wada, Akihiko Tsuruta, Kohei Irie, Ryusuke Kamagata, Koji Maekawa, Tomoko Fujita, Shohei Koshino, Saori Kumamaru, Kanako Suzuki, Michimasa Nakanishi, Atsushi Hori, Masaaki Aoki, Shigeki |
author_facet | Wada, Akihiko Tsuruta, Kohei Irie, Ryusuke Kamagata, Koji Maekawa, Tomoko Fujita, Shohei Koshino, Saori Kumamaru, Kanako Suzuki, Michimasa Nakanishi, Atsushi Hori, Masaaki Aoki, Shigeki |
author_sort | Wada, Akihiko |
collection | PubMed |
description | PURPOSE: Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are representative disorders of dementia of the elderly and the neuroimaging has contributed to early diagnosis by estimation of alterations of brain volume, blood flow and metabolism. A brain network analysis by MR imaging (MR connectome) is a recently developed technique and can estimate the dysfunction of the brain network in AD and DLB. A graph theory which is a major technique of network analysis is useful for a group study to extract the feature of disorders, but is not necessarily suitable for the disorder differentiation at the individual level. In this investigation, we propose a deep learning technique as an alternative method of the graph analysis for recognition and classification of AD and DLB at the individual subject level. MATERIALS AND METHODS: Forty-eight brain structural connectivity data of 18 AD, 8 DLB and 22 healthy controls were applied to the machine learning consisting of a six-layer convolution neural network (CNN) model. Estimation of the deep learning model to classify AD, DLB and non-AD/DLB was performed using the 4-fold cross-validation method. RESULTS: The accuracy, average precision and recall of our CNN model were 0.73, 0.78 and 0.73, and the specificity precision and recall were 0.68 and 0.79 in AD, 0.94 and 0.65 in DLB and 0.73 and 0.75 in non-AD/DLB. The triangular probability map of the MR connectome revealed the probability of AD, DLB and non-AD/DLB in each subject. CONCLUSION: Our preliminary investigation revealed the adaptation of deep learning to the MR connectome and proposed its utility in the differentiation of dementia disorders at the individual subject level. |
format | Online Article Text |
id | pubmed-6630050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Japanese Society for Magnetic Resonance in Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-66300502019-07-23 Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity Wada, Akihiko Tsuruta, Kohei Irie, Ryusuke Kamagata, Koji Maekawa, Tomoko Fujita, Shohei Koshino, Saori Kumamaru, Kanako Suzuki, Michimasa Nakanishi, Atsushi Hori, Masaaki Aoki, Shigeki Magn Reson Med Sci Major Paper PURPOSE: Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are representative disorders of dementia of the elderly and the neuroimaging has contributed to early diagnosis by estimation of alterations of brain volume, blood flow and metabolism. A brain network analysis by MR imaging (MR connectome) is a recently developed technique and can estimate the dysfunction of the brain network in AD and DLB. A graph theory which is a major technique of network analysis is useful for a group study to extract the feature of disorders, but is not necessarily suitable for the disorder differentiation at the individual level. In this investigation, we propose a deep learning technique as an alternative method of the graph analysis for recognition and classification of AD and DLB at the individual subject level. MATERIALS AND METHODS: Forty-eight brain structural connectivity data of 18 AD, 8 DLB and 22 healthy controls were applied to the machine learning consisting of a six-layer convolution neural network (CNN) model. Estimation of the deep learning model to classify AD, DLB and non-AD/DLB was performed using the 4-fold cross-validation method. RESULTS: The accuracy, average precision and recall of our CNN model were 0.73, 0.78 and 0.73, and the specificity precision and recall were 0.68 and 0.79 in AD, 0.94 and 0.65 in DLB and 0.73 and 0.75 in non-AD/DLB. The triangular probability map of the MR connectome revealed the probability of AD, DLB and non-AD/DLB in each subject. CONCLUSION: Our preliminary investigation revealed the adaptation of deep learning to the MR connectome and proposed its utility in the differentiation of dementia disorders at the individual subject level. Japanese Society for Magnetic Resonance in Medicine 2018-12-03 /pmc/articles/PMC6630050/ /pubmed/30504639 http://dx.doi.org/10.2463/mrms.mp.2018-0091 Text en © 2018 The Japan Neurosurgical Society This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Major Paper Wada, Akihiko Tsuruta, Kohei Irie, Ryusuke Kamagata, Koji Maekawa, Tomoko Fujita, Shohei Koshino, Saori Kumamaru, Kanako Suzuki, Michimasa Nakanishi, Atsushi Hori, Masaaki Aoki, Shigeki Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title | Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title_full | Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title_fullStr | Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title_full_unstemmed | Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title_short | Differentiating Alzheimer’s Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity |
title_sort | differentiating alzheimer’s disease from dementia with lewy bodies using a deep learning technique based on structural brain connectivity |
topic | Major Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630050/ https://www.ncbi.nlm.nih.gov/pubmed/30504639 http://dx.doi.org/10.2463/mrms.mp.2018-0091 |
work_keys_str_mv | AT wadaakihiko differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT tsurutakohei differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT irieryusuke differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT kamagatakoji differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT maekawatomoko differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT fujitashohei differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT koshinosaori differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT kumamarukanako differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT suzukimichimasa differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT nakanishiatsushi differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT horimasaaki differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity AT aokishigeki differentiatingalzheimersdiseasefromdementiawithlewybodiesusingadeeplearningtechniquebasedonstructuralbrainconnectivity |