Cargando…

A Fast GPU-optimized 3D MRI Simulator for Arbitrary k-space Sampling

PURPOSE: To develop a fast 3D MRI simulator for arbitrary k-space sampling using a graphical processing unit (GPU) and demonstrate its performance by comparing simulation and experimental results in a real MRI system. MATERIALS AND METHODS: A fast 3D MRI simulator using a GeForce GTX 1080 GPU (NVIDI...

Descripción completa

Detalles Bibliográficos
Autores principales: Kose, Ryoichi, Setoi, Ayana, Kose, Katsumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society for Magnetic Resonance in Medicine 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630054/
https://www.ncbi.nlm.nih.gov/pubmed/30416180
http://dx.doi.org/10.2463/mrms.mp.2018-0022
Descripción
Sumario:PURPOSE: To develop a fast 3D MRI simulator for arbitrary k-space sampling using a graphical processing unit (GPU) and demonstrate its performance by comparing simulation and experimental results in a real MRI system. MATERIALS AND METHODS: A fast 3D MRI simulator using a GeForce GTX 1080 GPU (NVIDIA Corporation, Santa Clara, CA, USA) was developed using C++ and the CUDA 8.0 platform (NVIDIA Corporation). The unique advantage of this simulator was that it could use the same pulse sequence as used in the experiment. The performance of the MRI simulator was measured using two GTX 1080 GPUs and 3D Cones sequences. The MRI simulation results for 3D non-Cartesian sampling trajectories like 3D Cones sequences using a numerical 3D phantom were compared with the experimental results obtained with a real MRI system and a real 3D phantom. RESULTS: The performance of the MRI simulator was about 3800–4900 gigaflops for 128- to 4-shot 3D Cones sequences with 256(3) voxels, which was about 60% of the performance of the previous MRI simulator optimized for Cartesian sampling calculated for a Cartesian sampling gradient-echo sequence with 256(3) voxels. The effects of the static magnetic field inhomogeneity, radio-frequency field inhomogeneity, gradient field nonlinearity, and fast repetition times on the MR images were reproduced in the simulated images as observed in the experimental images. CONCLUSION: The 3D MRI simulator developed for arbitrary k-space sampling optimized using GPUs is a powerful tool for the development and evaluation of advanced imaging sequences including both Cartesian and non-Cartesian k-space sampling.