Cargando…
An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties
In this work, an energetic composite fiber, in which 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) nanoparticles intimately incorporated with a nitrocellulose/glycidyl azide polymer (NC/GAP) fiber, was prepared by the electrospinning method. The morphology and structure of the nanofiber was char...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630257/ https://www.ncbi.nlm.nih.gov/pubmed/31167442 http://dx.doi.org/10.3390/nano9060854 |
_version_ | 1783435259448131584 |
---|---|
author | Luo, Tingting Wang, Yi Huang, Hao Shang, Feifei Song, Xiaolan |
author_facet | Luo, Tingting Wang, Yi Huang, Hao Shang, Feifei Song, Xiaolan |
author_sort | Luo, Tingting |
collection | PubMed |
description | In this work, an energetic composite fiber, in which 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) nanoparticles intimately incorporated with a nitrocellulose/glycidyl azide polymer (NC/GAP) fiber, was prepared by the electrospinning method. The morphology and structure of the nanofiber was characterized by scanning electron microscopy (SEM), energy dispersive X-Ray (EDX), fourier transform infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The nanofibers possessed a three-dimensional (3D) net structure and a large specific surface area. Thermal analysis, energetic performance, and sensitivities were investigated, and they were compared with NC/GAP and LLM-105 nanoparticles. The NC/GAP/nano-LLM-105 nanofibers show higher decomposition rates and lower decomposition temperatures. The NC/GAP/nano-LLM-105 decomposed to CO(2), CO, H(2)O, N(2)O, and a few NO, -CH(2)O-, and -CH- fragments, in the thermal-infrared spectrometry online (TG-IR) measurement. The NC/GAP/nano-LLM-105 nanofibers demonstrated a higher standard specific impulse (I(sp)), a higher combustion chamber temperature (T(c)), and a higher specialty height (H(50)). The introduction of nano-LLM-105 in the NC/GAP matrix results in an improvement in energetic performance and safety. |
format | Online Article Text |
id | pubmed-6630257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66302572019-08-19 An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties Luo, Tingting Wang, Yi Huang, Hao Shang, Feifei Song, Xiaolan Nanomaterials (Basel) Article In this work, an energetic composite fiber, in which 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) nanoparticles intimately incorporated with a nitrocellulose/glycidyl azide polymer (NC/GAP) fiber, was prepared by the electrospinning method. The morphology and structure of the nanofiber was characterized by scanning electron microscopy (SEM), energy dispersive X-Ray (EDX), fourier transform infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The nanofibers possessed a three-dimensional (3D) net structure and a large specific surface area. Thermal analysis, energetic performance, and sensitivities were investigated, and they were compared with NC/GAP and LLM-105 nanoparticles. The NC/GAP/nano-LLM-105 nanofibers show higher decomposition rates and lower decomposition temperatures. The NC/GAP/nano-LLM-105 decomposed to CO(2), CO, H(2)O, N(2)O, and a few NO, -CH(2)O-, and -CH- fragments, in the thermal-infrared spectrometry online (TG-IR) measurement. The NC/GAP/nano-LLM-105 nanofibers demonstrated a higher standard specific impulse (I(sp)), a higher combustion chamber temperature (T(c)), and a higher specialty height (H(50)). The introduction of nano-LLM-105 in the NC/GAP matrix results in an improvement in energetic performance and safety. MDPI 2019-06-04 /pmc/articles/PMC6630257/ /pubmed/31167442 http://dx.doi.org/10.3390/nano9060854 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Tingting Wang, Yi Huang, Hao Shang, Feifei Song, Xiaolan An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title | An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title_full | An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title_fullStr | An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title_full_unstemmed | An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title_short | An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties |
title_sort | electrospun preparation of the nc/gap/nano-llm-105 nanofiber and its properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630257/ https://www.ncbi.nlm.nih.gov/pubmed/31167442 http://dx.doi.org/10.3390/nano9060854 |
work_keys_str_mv | AT luotingting anelectrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT wangyi anelectrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT huanghao anelectrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT shangfeifei anelectrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT songxiaolan anelectrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT luotingting electrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT wangyi electrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT huanghao electrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT shangfeifei electrospunpreparationofthencgapnanollm105nanofiberanditsproperties AT songxiaolan electrospunpreparationofthencgapnanollm105nanofiberanditsproperties |