Cargando…

Citric Acid Tunes the Formation of Antimicrobial Melanin-Like Nanostructures

Nature has provided a valuable source of inspiration for developing high performance multifunctional materials. Particularly, catechol-containing amino acid l-3,4-dihydroxyphenylalanine (l-DOPA) has aroused the interest to design hybrid multifunctional materials with superior adhesive ability. DOPA...

Descripción completa

Detalles Bibliográficos
Autores principales: Melone, Pietro, Vitiello, Giuseppe, Di Napoli, Michela, Zanfardino, Anna, Caso, Maria Federica, Silvestri, Brigida, Varcamonti, Mario, D’Errico, Gerardino, Luciani, Giuseppina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630385/
https://www.ncbi.nlm.nih.gov/pubmed/31151301
http://dx.doi.org/10.3390/biomimetics4020040
Descripción
Sumario:Nature has provided a valuable source of inspiration for developing high performance multifunctional materials. Particularly, catechol-containing amino acid l-3,4-dihydroxyphenylalanine (l-DOPA) has aroused the interest to design hybrid multifunctional materials with superior adhesive ability. DOPA oxidative polymerization mediated by either melanogenic enzymes or an alkaline environment involving catechol intermolecular cross-linking, ultimately leads to melanin oligomers. Recently, relevant studies disclosed the ability of Ti-based nanostructures to tune melanin’s supramolecular structure during its formation, starting from melanogenic precursors, thus improving both antioxidant and antimicrobial properties. In this work, we propose a novel biomimetic approach to design hybrid DOPA melanin-like nanostructures through a hydrothermal synthesis opportunely modified by using citric acid to control hydrolysis and condensation reactions of titanium alkoxide precursors. UV-Vis and Electron paramagnetic resonance (EPR) spectroscopic evidences highlighted the key role of citrate–Ti(IV) and DOPA–Ti(IV) complexes in controlling DOPA polymerization, which specifically occurred during the hydrothermal step, mediating and tuning its conversion to melanin-like oligomers. Trasmission electron microscopy (TEM) images proved the efficacy of the proposed synthesis approach in tuning the formation of nanosized globular nanostructures, with high biocide performances. The obtained findings could provide strategic guidelines to set up biomimetic processes, exploiting the catechol-metal complex to obtain hybrid melanin-like nanosystems with optimized multifunctional behavior.