Cargando…
Improving Post-Filtering of Artificial Speech Using Pre-Trained LSTM Neural Networks
Several researchers have contemplated deep learning-based post-filters to increase the quality of statistical parametric speech synthesis, which perform a mapping of the synthetic speech to the natural speech, considering the different parameters separately and trying to reduce the gap between them....
Autor principal: | Coto-Jiménez, Marvin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630405/ https://www.ncbi.nlm.nih.gov/pubmed/31141924 http://dx.doi.org/10.3390/biomimetics4020039 |
Ejemplares similares
-
Evaluation of Mixed Deep Neural Networks for Reverberant Speech Enhancement
por: Gutiérrez-Muñoz, Michelle, et al.
Publicado: (2019) -
Gaussian-Filtered High-Frequency-Feature Trained Optimized BiLSTM Network for Spoofed-Speech Classification
por: Mewada, Hiren, et al.
Publicado: (2023) -
Experimental Study on Transfer Learning in Denoising Autoencoders for Speech Enhancement
por: Coto-Jiménez, Marvin
Publicado: (2020) -
Discriminative Multi-Stream Postfilters Based on Deep Learning for Enhancing Statistical Parametric Speech Synthesis
por: Coto-Jiménez, Marvin
Publicado: (2021) -
Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures
por: Jin, Jie, et al.
Publicado: (2021)