Cargando…
The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants
The activated sludge in wastewater treatment plants (WWTP) designed for enhanced biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20–30% of the activated sludge communi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630437/ https://www.ncbi.nlm.nih.gov/pubmed/31027192 http://dx.doi.org/10.3390/proteomes7020016 |
_version_ | 1783435302460719104 |
---|---|
author | Herbst, Florian-Alexander Dueholm, Morten S. Wimmer, Reinhard Nielsen, Per Halkjær |
author_facet | Herbst, Florian-Alexander Dueholm, Morten S. Wimmer, Reinhard Nielsen, Per Halkjær |
author_sort | Herbst, Florian-Alexander |
collection | PubMed |
description | The activated sludge in wastewater treatment plants (WWTP) designed for enhanced biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20–30% of the activated sludge community based on 16S rRNA amplicon sequencing and quantitative fluorescence in situ hybridization analyses, although the genus is in low abundance in the influent wastewater. Here we investigated how Tetrasphaera can successfully out-compete most other microorganisms in such highly dynamic ecosystems. To achieve this, we analyzed the physiological adaptations of the WWTP isolate T. elongata str. LP2 during an aerobic to anoxic shift by label-free quantitative proteomics and NMR-metabolomics. Escherichia coli was used as reference organism as it shares several metabolic capabilities and is regularly introduced to wastewater treatment plants without succeeding there. When compared to E. coli, only minor changes in the proteome of T. elongata were observed after the switch to anoxic conditions. This indicates that metabolic pathways for anaerobic energy harvest were already expressed during the aerobic growth. This allows continuous growth of Tetrasphaera immediately after the switch to anoxic conditions. Metabolomics furthermore revealed that the substrates provided were exploited far more efficiently by Tetrasphaera than by E. coli. These results suggest that T. elongata prospers in the dynamic WWTP environment due to adaptation to the changing environmental conditions. |
format | Online Article Text |
id | pubmed-6630437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66304372019-08-19 The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants Herbst, Florian-Alexander Dueholm, Morten S. Wimmer, Reinhard Nielsen, Per Halkjær Proteomes Article The activated sludge in wastewater treatment plants (WWTP) designed for enhanced biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20–30% of the activated sludge community based on 16S rRNA amplicon sequencing and quantitative fluorescence in situ hybridization analyses, although the genus is in low abundance in the influent wastewater. Here we investigated how Tetrasphaera can successfully out-compete most other microorganisms in such highly dynamic ecosystems. To achieve this, we analyzed the physiological adaptations of the WWTP isolate T. elongata str. LP2 during an aerobic to anoxic shift by label-free quantitative proteomics and NMR-metabolomics. Escherichia coli was used as reference organism as it shares several metabolic capabilities and is regularly introduced to wastewater treatment plants without succeeding there. When compared to E. coli, only minor changes in the proteome of T. elongata were observed after the switch to anoxic conditions. This indicates that metabolic pathways for anaerobic energy harvest were already expressed during the aerobic growth. This allows continuous growth of Tetrasphaera immediately after the switch to anoxic conditions. Metabolomics furthermore revealed that the substrates provided were exploited far more efficiently by Tetrasphaera than by E. coli. These results suggest that T. elongata prospers in the dynamic WWTP environment due to adaptation to the changing environmental conditions. MDPI 2019-04-25 /pmc/articles/PMC6630437/ /pubmed/31027192 http://dx.doi.org/10.3390/proteomes7020016 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Herbst, Florian-Alexander Dueholm, Morten S. Wimmer, Reinhard Nielsen, Per Halkjær The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title | The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title_full | The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title_fullStr | The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title_full_unstemmed | The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title_short | The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants |
title_sort | proteome of tetrasphaera elongata is adapted to changing conditions in wastewater treatment plants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630437/ https://www.ncbi.nlm.nih.gov/pubmed/31027192 http://dx.doi.org/10.3390/proteomes7020016 |
work_keys_str_mv | AT herbstflorianalexander theproteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT dueholmmortens theproteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT wimmerreinhard theproteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT nielsenperhalkjær theproteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT herbstflorianalexander proteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT dueholmmortens proteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT wimmerreinhard proteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants AT nielsenperhalkjær proteomeoftetrasphaeraelongataisadaptedtochangingconditionsinwastewatertreatmentplants |