Cargando…

Coarse-Grained Modelling and Temperature Effect on the Morphology of PS-b-PI Copolymer

Spontaneous spatial organization behavior and the aggregate morphology of polystyrene-block-polyisoprene (PS-b-PI) copolymer were investigated. Molecular dynamic (MD) and mesoscopic simulations using the dynamic of mean field density functional theory (DDF) were adopted to investigate the morphology...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiangraeng, Natthiti, Lee, Vannajan Sanghiran, Nimmanpipug, Piyarat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630459/
https://www.ncbi.nlm.nih.gov/pubmed/31174400
http://dx.doi.org/10.3390/polym11061008
Descripción
Sumario:Spontaneous spatial organization behavior and the aggregate morphology of polystyrene-block-polyisoprene (PS-b-PI) copolymer were investigated. Molecular dynamic (MD) and mesoscopic simulations using the dynamic of mean field density functional theory (DDF) were adopted to investigate the morphology changes exhibited by this block copolymer (BCP). In the mesoscopic simulations, several atoms in repeating units were grouped together into a bead representing styrene or isoprene segments as a coarse-grained model. Inter-bead interactions and essential parameters for mesoscopic models were optimized from MD simulations. Study indicated that morphology alternations can be induced in this system at annealing temperature of 393, 493, and 533 K. From our simulations, lamellar, bicontinuous, and hexagonally packed cylindrical equilibrium morphologies were achieved. Our simulated morphologies agree well with the reported experimental evidence at the selected temperature. The process of aggregate formation and morphology evolution were concretely clarified.