Cargando…
Metabolic Brain Network Analysis of FDG-PET in Alzheimer’s Disease Using Kernel-Based Persistent Features
Recent research of persistent homology in algebraic topology has shown that the altered network organization of human brain provides a promising indicator of many neuropsychiatric disorders and neurodegenerative diseases. However, the current slope-based approach may not accurately characterize chan...
Autores principales: | Kuang, Liqun, Zhao, Deyu, Xing, Jiacheng, Chen, Zhongyu, Xiong, Fengguang, Han, Xie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630461/ https://www.ncbi.nlm.nih.gov/pubmed/31234358 http://dx.doi.org/10.3390/molecules24122301 |
Ejemplares similares
-
White Matter Brain Network Research in Alzheimer’s Disease Using Persistent Features
por: Kuang, Liqun, et al.
Publicado: (2020) -
Default Mode Network Analysis of APOE Genotype in Cognitively Unimpaired Subjects Based on Persistent Homology
por: Kuang, Liqun, et al.
Publicado: (2020) -
A Spatiotemporal Brain Network Analysis of Alzheimer’s Disease Based on Persistent Homology
por: Xing, Jiacheng, et al.
Publicado: (2022) -
Quantifying brain metabolism from FDG‐PET images into a probability of Alzheimer's dementia score
por: Yee, Evangeline, et al.
Publicado: (2019) -
Regional brain metabolism in schizophrenia: An FDG-PET study
por: Seethalakshmi, R., et al.
Publicado: (2006)