Cargando…
Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane
Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose n...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630560/ https://www.ncbi.nlm.nih.gov/pubmed/31174312 http://dx.doi.org/10.3390/membranes9060070 |
_version_ | 1783435330810019840 |
---|---|
author | Li, Nancy Zheng, Jackie Hadi, Pejman Yang, Mengying Huang, Xiangyu Ma, Hongyang Walker, Harold W. Hsiao, Benjamin S. |
author_facet | Li, Nancy Zheng, Jackie Hadi, Pejman Yang, Mengying Huang, Xiangyu Ma, Hongyang Walker, Harold W. Hsiao, Benjamin S. |
author_sort | Li, Nancy |
collection | PubMed |
description | Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 [Formula: see text]) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 [Formula: see text] , but the rejection was decreased to 60–70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents. |
format | Online Article Text |
id | pubmed-6630560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66305602019-08-19 Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane Li, Nancy Zheng, Jackie Hadi, Pejman Yang, Mengying Huang, Xiangyu Ma, Hongyang Walker, Harold W. Hsiao, Benjamin S. Membranes (Basel) Article Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 [Formula: see text]) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 [Formula: see text] , but the rejection was decreased to 60–70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents. MDPI 2019-06-06 /pmc/articles/PMC6630560/ /pubmed/31174312 http://dx.doi.org/10.3390/membranes9060070 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Nancy Zheng, Jackie Hadi, Pejman Yang, Mengying Huang, Xiangyu Ma, Hongyang Walker, Harold W. Hsiao, Benjamin S. Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title_full | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title_fullStr | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title_full_unstemmed | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title_short | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane |
title_sort | synthesis and characterization of a high flux nanocellulose–cellulose acetate nanocomposite membrane |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630560/ https://www.ncbi.nlm.nih.gov/pubmed/31174312 http://dx.doi.org/10.3390/membranes9060070 |
work_keys_str_mv | AT linancy synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT zhengjackie synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT hadipejman synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT yangmengying synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT huangxiangyu synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT mahongyang synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT walkerharoldw synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane AT hsiaobenjamins synthesisandcharacterizationofahighfluxnanocellulosecelluloseacetatenanocompositemembrane |