Cargando…
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
Accurate and timely bearing fault diagnosis is crucial to decrease the probability of unexpected failures of rotating machinery and improve the efficiency of its scheduled maintenance. Since convolutional neural networks (CNN) have poor feature extraction capability for sensor data with 1D format, C...
Autores principales: | Li, Guoqiang, Deng, Chao, Wu, Jun, Xu, Xuebing, Shao, Xinyu, Wang, Yuanhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630627/ https://www.ncbi.nlm.nih.gov/pubmed/31248106 http://dx.doi.org/10.3390/s19122750 |
Ejemplares similares
-
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
por: Liu, Yang, et al.
Publicado: (2019) -
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023) -
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
por: Li, Shaobo, et al.
Publicado: (2017) -
Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Xu, Gaowei, et al.
Publicado: (2019)