Cargando…

Putative Periodontal Pathogens, Filifactor alocis and Peptoanaerobacter stomatis, Induce Differential Cytokine and Chemokine Production by Human Neutrophils

Periodontitis is a highly prevalent infectious disease that affects ~ 50% of the adults in the USA alone. Two Gram-positive anaerobic oral bacteria, Filifactor alocis and Peptoanaerobacter stomatis, have emerged as important periodontal pathogens. Neutrophils are a major component of the innate host...

Descripción completa

Detalles Bibliográficos
Autores principales: Vashishta, Aruna, Jimenez-Flores, Emeri, Klaes, Christopher K., Tian, Shifu, Miralda, Irina, Lamont, Richard J., Uriarte, Silvia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630776/
https://www.ncbi.nlm.nih.gov/pubmed/31052371
http://dx.doi.org/10.3390/pathogens8020059
Descripción
Sumario:Periodontitis is a highly prevalent infectious disease that affects ~ 50% of the adults in the USA alone. Two Gram-positive anaerobic oral bacteria, Filifactor alocis and Peptoanaerobacter stomatis, have emerged as important periodontal pathogens. Neutrophils are a major component of the innate host response in the gingival tissue, and the contribution of neutrophil-derived cytokines and chemokines plays a central role in disease progression. The pattern of cytokines and chemokines released by human neutrophils upon stimulation with newly appreciated periodontal bacteria compared to the keystone oral pathogen Porphyromonas gingivalis was investigated. Our results showed that both F. alocis and P. stomatis triggered TLR2/6 activation. F. alocis induced significant changes in gene expression of cytokines and chemokines in human neutrophils compared to unstimulated cells. However, except for IL-1ra, neutrophils released lower levels of cytokines and chemokines in response to F. alocis compared to P. stomatis. Furthermore, bacteria-free conditioned supernatant collected from neutrophils challenged with P. stomatis, but not from P. gingivalis or F. alocis, was chemotactic towards both neutrophils and monocytes. Elucidating stimuli-specific modulation of human neutrophil effector functions in the context of dysbiotic microbial community constituents provides valuable information for understanding the pathogenesis of periodontal diseases.