Cargando…
Two Measurement Set Partitioning Algorithms for the Extended Target Probability Hypothesis Density Filter
The extended target probability hypothesis density (ET-PHD) filter cannot work well if the density of measurements varies from target to target, which is based on the measurement set partitioning algorithms employing the Mahalanobis distance between measurements. To tackle the problem, two measureme...
Autores principales: | Han, Yulan, Han, Chongzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630985/ https://www.ncbi.nlm.nih.gov/pubmed/31200450 http://dx.doi.org/10.3390/s19122665 |
Ejemplares similares
-
Vehicle Detection Based on Probability Hypothesis Density Filter
por: Zhang, Feihu, et al.
Publicado: (2016) -
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
por: Yang, Feng, et al.
Publicado: (2016) -
A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers
por: Liu, Zhuowei, et al.
Publicado: (2018) -
Multiple Vehicle Cooperative Localization with Spatial Registration Based on a Probability Hypothesis Density Filter
por: Zhang, Feihu, et al.
Publicado: (2014) -
Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances
por: Wang, Liu, et al.
Publicado: (2023)