Cargando…
Recent Progress in Self-Powered Skin Sensors
Self-powered skin sensors have attracted significant attention in recent years due to their great potential in medical care, robotics, prosthetics, and sports. More importantly, self-powered skin sensors do not need any energy-supply components like batteries, which allows them to work sustainably a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631024/ https://www.ncbi.nlm.nih.gov/pubmed/31248225 http://dx.doi.org/10.3390/s19122763 |
Sumario: | Self-powered skin sensors have attracted significant attention in recent years due to their great potential in medical care, robotics, prosthetics, and sports. More importantly, self-powered skin sensors do not need any energy-supply components like batteries, which allows them to work sustainably and saves them the trouble of replacement of batteries. The self-powered skin sensors are mainly based on energy harvesters, with the device itself generating electrical signals when triggered by the detected stimulus or analyte, such as body motion, touch/pressure, acoustic sound, and chemicals in sweat. Herein, the recent research achievements of self-powered skin sensors are comprehensively and systematically reviewed. According to the different monitoring signals, the self-powered skin sensors are summarized and discussed with a focus on the working mechanism, device structure, and the sensing principle. Based on the recent progress, the key challenges that exist and the opportunities that lie ahead are also discussed. |
---|