Cargando…
A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh
This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631116/ https://www.ncbi.nlm.nih.gov/pubmed/31212850 http://dx.doi.org/10.3390/ma12121896 |
_version_ | 1783435448528404480 |
---|---|
author | Soleimani Zohr Shiri, Mohammad Henderson, William Mucalo, Michael R. |
author_facet | Soleimani Zohr Shiri, Mohammad Henderson, William Mucalo, Michael R. |
author_sort | Soleimani Zohr Shiri, Mohammad |
collection | PubMed |
description | This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this microemulsion-based approach to synthesize these noble metal nanoparticle systems. Firstly, some fundamentals and important factors of the microemulsion synthesis methodology are introduced. Afterward, a review of the investigations on the microemulsion syntheses of Os, Re, Ir, and Rh nanoparticle (NP) systems (in all forms, viz., metallic, oxide, mixed-metal, and discrete molecular complexes) is presented for work published in the last ten years. The chosen noble metals are traditionally very reactive in nanosized dimensions and have a strong tendency to aggregate when prepared via other methods. Also, the particle size and particle size distribution of these colloids can have a significant impact on their catalytic performance. It is shown that the microemulsion approach has the capability to better stabilize these metal colloids and can control the size of the synthesized NPs. This generally leads to smaller particles and higher catalytic activity when they are tested in applications. |
format | Online Article Text |
id | pubmed-6631116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66311162019-08-19 A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh Soleimani Zohr Shiri, Mohammad Henderson, William Mucalo, Michael R. Materials (Basel) Review This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this microemulsion-based approach to synthesize these noble metal nanoparticle systems. Firstly, some fundamentals and important factors of the microemulsion synthesis methodology are introduced. Afterward, a review of the investigations on the microemulsion syntheses of Os, Re, Ir, and Rh nanoparticle (NP) systems (in all forms, viz., metallic, oxide, mixed-metal, and discrete molecular complexes) is presented for work published in the last ten years. The chosen noble metals are traditionally very reactive in nanosized dimensions and have a strong tendency to aggregate when prepared via other methods. Also, the particle size and particle size distribution of these colloids can have a significant impact on their catalytic performance. It is shown that the microemulsion approach has the capability to better stabilize these metal colloids and can control the size of the synthesized NPs. This generally leads to smaller particles and higher catalytic activity when they are tested in applications. MDPI 2019-06-12 /pmc/articles/PMC6631116/ /pubmed/31212850 http://dx.doi.org/10.3390/ma12121896 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Soleimani Zohr Shiri, Mohammad Henderson, William Mucalo, Michael R. A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title | A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title_full | A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title_fullStr | A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title_full_unstemmed | A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title_short | A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh |
title_sort | review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, os, re, ir and rh |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631116/ https://www.ncbi.nlm.nih.gov/pubmed/31212850 http://dx.doi.org/10.3390/ma12121896 |
work_keys_str_mv | AT soleimanizohrshirimohammad areviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh AT hendersonwilliam areviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh AT mucalomichaelr areviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh AT soleimanizohrshirimohammad reviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh AT hendersonwilliam reviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh AT mucalomichaelr reviewofthelesserstudiedmicroemulsionbasedsynthesismethodologiesusedforpreparingnanoparticlesystemsofthenoblemetalsosreirandrh |