Cargando…
Performance-Enhanced 365 nm UV LEDs with Electrochemically Etched Nanoporous AlGaN Distributed Bragg Reflectors
A 365-nm UV LED was fabricated based on embedded nanoporous AlGaN distributed Bragg reflectors (DBR) by electrochemical etching. The porous DBR had a reflectance of 93.5% at the central wavelength of 365 nm; this is the highest value of porous AlGaN DBRs below 370 nm which has been reported so far....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631278/ https://www.ncbi.nlm.nih.gov/pubmed/31174358 http://dx.doi.org/10.3390/nano9060862 |
Sumario: | A 365-nm UV LED was fabricated based on embedded nanoporous AlGaN distributed Bragg reflectors (DBR) by electrochemical etching. The porous DBR had a reflectance of 93.5% at the central wavelength of 365 nm; this is the highest value of porous AlGaN DBRs below 370 nm which has been reported so far. An innovative two-step etching method with a SiO(2) sidewall protection layer (SPL) was proposed to protect the n-AlGaN layer and active region of UV LED from being etched by the electrolyte. The DBR-LED with SPL showed 54.3% improvement of maximal external quantum efficiency (EQE) and 65.7% enhancement of optical power at 100 mA without any degeneration in electrical properties, compared with the un-etched standard LED sample. This work has paved the way for the application of electrically-pumped UV LEDs and VCSELs based on nanoporous AlGaN DBRs. |
---|