Cargando…
Convolutional Recurrent Neural Network-Based Event Detection in Tunnels Using Multiple Microphones
This paper proposes a sound event detection (SED) method in tunnels to prevent further uncontrollable accidents. Tunnel accidents are accompanied by crashes and tire skids, which usually produce abnormal sounds. Since the tunnel environment always has a severe level of noise, the detection accuracy...
Autores principales: | Kim, Nam Kyun, Jeon, Kwang Myung, Kim, Hong Kook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631336/ https://www.ncbi.nlm.nih.gov/pubmed/31208007 http://dx.doi.org/10.3390/s19122695 |
Ejemplares similares
-
Configuration-Invariant Sound Localization Technique Using Azimuth-Frequency Representation and Convolutional Neural Networks
por: Chun, Chanjun, et al.
Publicado: (2020) -
A combined convolutional and recurrent neural network for enhanced glaucoma detection
por: Gheisari, Soheila, et al.
Publicado: (2021) -
Fall Detection Using Multiple Bioradars and Convolutional Neural Networks
por: Anishchenko, Lesya, et al.
Publicado: (2019) -
The Microphone
por: Thornburgh, A.
Publicado: (1885) -
Automatic Detection of Whole Night Snoring Events Using Non-Contact Microphone
por: Dafna, Eliran, et al.
Publicado: (2013)