Cargando…

Design of Low RCS Circularly Polarized Patch Antenna Array Using Metasurface for CNSS Adaptive Antenna Applications

A low radar cross section (RCS) circularly polarized patch antenna array operating at the downlink S-band (2492 ± 5 MHz) of the Chinese Compass Navigation Satellite System (CNSS) is proposed. The low RCS is achieved by replacing the conventional metallic ground with an artificial magnetic conductor...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jianxing, Khan, Tayyab A., Chen, Juan, Raza, Muhammad U., Zhang, Anxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631366/
https://www.ncbi.nlm.nih.gov/pubmed/31200430
http://dx.doi.org/10.3390/ma12121898
Descripción
Sumario:A low radar cross section (RCS) circularly polarized patch antenna array operating at the downlink S-band (2492 ± 5 MHz) of the Chinese Compass Navigation Satellite System (CNSS) is proposed. The low RCS is achieved by replacing the conventional metallic ground with an artificial magnetic conductor (AMC)-based metasurface. Two different AMC unit cells are designed having a phase difference within 180 ± 37° and combined in a chessboard-like configuration to realize the AMC-based metasurface. Furthermore, the AMC-based metasurface is utilized as the ground of the CNSS array for wideband RCS reduction. A wideband RCS reduction from 6 GHz to 17 GHz is achieved due to the wideband diffusion property of the AMC unit cells. The maximum RCS reduction is more than 14 dB at 13.3 GHz irrespective of the polarization direction of the incident waves. Moreover, the circular polarization (CP) performance is realized by embedding a circular slot on the patch radiator of the antenna element. The radiation characteristics of the CNSS array are hardly impacted by the inclusion of the metasurface-based ground. The proposed CNSS array has been fabricated and measured. The measurement results are in reasonable agreement with the simulations. The proposed CNSS array can be a good candidate for CNSS adaptive antenna applications where low RCS is simultaneously demanded.