Cargando…

Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study

Understanding the hydrodynamic properties of polymeric coatings is crucial for the rational design of molecular transport involving polymeric surfaces and is relevant to drug delivery, sieving, molecular separations, etc. It has been found that the hydrodynamic radius of a polymer segment is an orde...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Peng, Sun, Tao, Jiang, Xikai, Kondrat, Svyatoslav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631430/
https://www.ncbi.nlm.nih.gov/pubmed/31212690
http://dx.doi.org/10.3390/polym11061038
_version_ 1783435515046920192
author Wu, Peng
Sun, Tao
Jiang, Xikai
Kondrat, Svyatoslav
author_facet Wu, Peng
Sun, Tao
Jiang, Xikai
Kondrat, Svyatoslav
author_sort Wu, Peng
collection PubMed
description Understanding the hydrodynamic properties of polymeric coatings is crucial for the rational design of molecular transport involving polymeric surfaces and is relevant to drug delivery, sieving, molecular separations, etc. It has been found that the hydrodynamic radius of a polymer segment is an order of magnitude smaller than its physical size, but the origin of this effect does not seem to be well understood. Herein, we study the hydrodynamic properties of polymeric coatings by using molecular dynamics simulations, navigated by the continuous Navier-Stokes-Brinkman model. We confirm that the averaged hydrodynamic radius of a polymer bead is about one order of magnitude smaller than its physical radius, and, in addition, we show that it exhibits a strong dependence on the degree of polymerization. We relate this variation of the hydrodynamic radius to the structural properties and hydrodynamic shielding by surrounding polymer beads. This is done by separating the effects originating from near and far beads. For the near beads, shielding is mainly due to the two nearest beads (of the same polymer) and leads to about a 5-fold reduction in the hydrodynamic radius. Assuming the additivity of the hydrodynamic shielding by far beads, we suggest a simple model, which captures correctly the qualitative behaviour of the hydrodynamic radius with the degree of polymerization. The revealed shielding effects provide important insights relevant to the advanced modelling of hydrodynamic properties of polymeric coatings.
format Online
Article
Text
id pubmed-6631430
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-66314302019-08-19 Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study Wu, Peng Sun, Tao Jiang, Xikai Kondrat, Svyatoslav Polymers (Basel) Article Understanding the hydrodynamic properties of polymeric coatings is crucial for the rational design of molecular transport involving polymeric surfaces and is relevant to drug delivery, sieving, molecular separations, etc. It has been found that the hydrodynamic radius of a polymer segment is an order of magnitude smaller than its physical size, but the origin of this effect does not seem to be well understood. Herein, we study the hydrodynamic properties of polymeric coatings by using molecular dynamics simulations, navigated by the continuous Navier-Stokes-Brinkman model. We confirm that the averaged hydrodynamic radius of a polymer bead is about one order of magnitude smaller than its physical radius, and, in addition, we show that it exhibits a strong dependence on the degree of polymerization. We relate this variation of the hydrodynamic radius to the structural properties and hydrodynamic shielding by surrounding polymer beads. This is done by separating the effects originating from near and far beads. For the near beads, shielding is mainly due to the two nearest beads (of the same polymer) and leads to about a 5-fold reduction in the hydrodynamic radius. Assuming the additivity of the hydrodynamic shielding by far beads, we suggest a simple model, which captures correctly the qualitative behaviour of the hydrodynamic radius with the degree of polymerization. The revealed shielding effects provide important insights relevant to the advanced modelling of hydrodynamic properties of polymeric coatings. MDPI 2019-06-11 /pmc/articles/PMC6631430/ /pubmed/31212690 http://dx.doi.org/10.3390/polym11061038 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wu, Peng
Sun, Tao
Jiang, Xikai
Kondrat, Svyatoslav
Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title_full Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title_fullStr Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title_full_unstemmed Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title_short Hydrodynamic Properties of Polymers Screening the Electrokinetic Flow: Insights from a Computational Study
title_sort hydrodynamic properties of polymers screening the electrokinetic flow: insights from a computational study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631430/
https://www.ncbi.nlm.nih.gov/pubmed/31212690
http://dx.doi.org/10.3390/polym11061038
work_keys_str_mv AT wupeng hydrodynamicpropertiesofpolymersscreeningtheelectrokineticflowinsightsfromacomputationalstudy
AT suntao hydrodynamicpropertiesofpolymersscreeningtheelectrokineticflowinsightsfromacomputationalstudy
AT jiangxikai hydrodynamicpropertiesofpolymersscreeningtheelectrokineticflowinsightsfromacomputationalstudy
AT kondratsvyatoslav hydrodynamicpropertiesofpolymersscreeningtheelectrokineticflowinsightsfromacomputationalstudy