Cargando…

Preparation of Cellulose Films from Sustainable CO(2)/DBU/DMSO System

Cellulose films are regarded as sustainable materials having wide applications in food packaging, separation, etc. Their preparation substantially relies on sufficient dissolution. Herein, various celluloses adequately dissolved in a new solvent system of carbon dioxide,1, 8-diazabicyclo [5.4.0] und...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Longming, Gan, Jianyun, Hu, Gang, Cai, Long, Li, Zaiquan, Zhang, Lihua, Zheng, Qiang, Xie, Haibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631611/
https://www.ncbi.nlm.nih.gov/pubmed/31167448
http://dx.doi.org/10.3390/polym11060994
Descripción
Sumario:Cellulose films are regarded as sustainable materials having wide applications in food packaging, separation, etc. Their preparation substantially relies on sufficient dissolution. Herein, various celluloses adequately dissolved in a new solvent system of carbon dioxide,1, 8-diazabicyclo [5.4.0] undec-7-ene and dimethyl sulfoxide (CO(2)/DBU/DMSO) were made in to films using different regeneration reagents. The films regenerated from ethanol and methanol presented homogeneous and smooth surfaces, while those from 5 wt % NaOH (aq.) and 5 wt % H(2)SO(4) (aq.) showed rough surfaces, as analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films regenerated from 5 wt % NaOH (aq.) and 5 wt % H(2)SO(4) (aq.) rendered cellulose II structures, while those regenerated from alcohols had amorphous structures as evidenced using fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) results. The films made of microcrystalline cellulose had a good light transmittance of about 90% at 800 nm with a tensile strength of 55 MPa and an elongation break of 6.5%, while those from wood pulp cellulose demonstrated satisfactory flexibility with a tensile strength of 91 MPa and an elongation break of 9.0%. This research reports a simple, environmental, and sustainable method to prepare cellulose films of good mechanical properties.