Cargando…
Substantial LIB Anode Performance of Graphitic Carbon Nanoflakes Derived from Biomass Green-Tea Waste
Biomass-derived carbonaceous constituents constitute fascinating green technology for electrochemical energy-storage devices. In light of this, interconnected mesoporous graphitic carbon nanoflakes were synthesized by utilizing waste green-tea powders through the sequential steps of air-assisted car...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631619/ https://www.ncbi.nlm.nih.gov/pubmed/31181698 http://dx.doi.org/10.3390/nano9060871 |
Sumario: | Biomass-derived carbonaceous constituents constitute fascinating green technology for electrochemical energy-storage devices. In light of this, interconnected mesoporous graphitic carbon nanoflakes were synthesized by utilizing waste green-tea powders through the sequential steps of air-assisted carbonization, followed by potassium hydroxide activation and water treatment. Green-tea waste-derived graphitic carbon displays an interconnected network of aggregated mesoporous nanoflakes. When using the mesoporous graphitic carbon nanoflakes as an anode material for the lithium-ion battery, an initial capacity of ~706 mAh/g and a reversible discharge capacity of ~400 mAh/g are achieved. Furthermore, the device sustains a large coulombic efficiency up to 96% during 100 operation cycles under the applied current density of 0.1 A/g. These findings depict that the bio-generated mesoporous graphitic carbon nanoflakes could be effectively utilized as a high-quality anode material in lithium-ion battery devices. |
---|