Cargando…

Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features

Land use classification is a fundamental task of information extraction from remote sensing imagery. Semantic segmentation based on deep convolutional neural networks (DCNNs) has shown outstanding performance in this task. However, these methods are still affected by the loss of spatial features. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Xuedong, Yang, Hui, Wu, Yanlan, Wu, Penghai, Wang, Biao, Zhou, Xinxin, Wang, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631649/
https://www.ncbi.nlm.nih.gov/pubmed/31234384
http://dx.doi.org/10.3390/s19122792
Descripción
Sumario:Land use classification is a fundamental task of information extraction from remote sensing imagery. Semantic segmentation based on deep convolutional neural networks (DCNNs) has shown outstanding performance in this task. However, these methods are still affected by the loss of spatial features. In this study, we proposed a new network, called the dense-coordconv network (DCCN), to reduce the loss of spatial features and strengthen object boundaries. In this network, the coordconv module is introduced into the improved DenseNet architecture to improve spatial information by putting coordinate information into feature maps. The proposed DCCN achieved an obvious performance in terms of the public ISPRS (International Society for Photogrammetry and Remote Sensing) 2D semantic labeling benchmark dataset. Compared with the results of other deep convolutional neural networks (U-net, SegNet, Deeplab-V3), the results of the DCCN method improved a lot and the OA (overall accuracy) and mean F1 score reached 89.48% and 86.89%, respectively. This indicates that the DCCN method can effectively reduce the loss of spatial features and improve the accuracy of semantic segmentation in high resolution remote sensing imagery.