Cargando…
Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features
Land use classification is a fundamental task of information extraction from remote sensing imagery. Semantic segmentation based on deep convolutional neural networks (DCNNs) has shown outstanding performance in this task. However, these methods are still affected by the loss of spatial features. In...
Autores principales: | Yao, Xuedong, Yang, Hui, Wu, Yanlan, Wu, Penghai, Wang, Biao, Zhou, Xinxin, Wang, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631649/ https://www.ncbi.nlm.nih.gov/pubmed/31234384 http://dx.doi.org/10.3390/s19122792 |
Ejemplares similares
-
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
Spectral–Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification
por: Mewada, Hiren K, et al.
Publicado: (2020) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Differential Deep Convolutional Neural Network Model for Brain Tumor Classification
por: Abd El Kader, Isselmou, et al.
Publicado: (2021) -
Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
por: Li, Penghai, et al.
Publicado: (2022)