Cargando…

Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms

BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to ki...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Ming, Zhang, Qian, Yuan, Xiaohong, Chen, Yuanzhong, Wu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631946/
https://www.ncbi.nlm.nih.gov/pubmed/31307525
http://dx.doi.org/10.1186/s13046-019-1295-8
_version_ 1783435638015524864
author Tan, Ming
Zhang, Qian
Yuan, Xiaohong
Chen, Yuanzhong
Wu, Yong
author_facet Tan, Ming
Zhang, Qian
Yuan, Xiaohong
Chen, Yuanzhong
Wu, Yong
author_sort Tan, Ming
collection PubMed
description BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to kill leukemia stem cells. We evaluated whether HHT combined with ATO can systematically kill leukemia stem cells (LSCs) and explored the synergistic effect and molecular mechanism. METHODS: CCK-8 was used to detect cell viability. The changes of cell cycle (PI staining), apoptosis (Annexin V/PI) and surface markers (CD34, CD38, CD96, CD45) were detected by flow cytometry. The cells of CD34+ primary leukemia and CD38- KG-1, and TF-1 were separated by flow cytometry. High-throughput mRNA sequencing was used to analysis mRNA level changes after the application of the two drugs. Western blot was used to verify the changes of pathway protein expression. NRG mice were used as the receptor of xenograft model. Histological H&E staining assess the invaded ability of leukemia cells, and laser scanning confocal microscopy evaluated the molecule markers change. RESULTS: HHT and ATO synergistically killed KG-1 (CD34(+)/CD96(+)/CD38(+)/(−)) and Kasumi-1 (CD34(+)/CD38(−)) cells. Their combination had a stronger effect of inducing apoptosis and blocking the cell cycle than HHT or ATO administrator alone, meanwhile significantly reducing the numbers of LSCs. Further, CD34(+)CD38(−) cells in KG-1, KG-1a, TF-1, and primary leukemia cells were more sensitive to HHT and ATO. High-throughput mRNA sequencing suggested that HHT alone could significantly upregulate molecules related to the Notch, P53, and NF-κB signaling pathways. When combined with ATO, HHT further upregulated P53, whereas HHT-induced NF-κB pathway activation was significantly suppressed. Western blot analysis verified the change of protein expression in the above pathways and further demonstrated that GSI, could eliminate these effects. In vivo, HHT combined with ATO significantly reduced the LSC burden, and weakened the expression of LSC markers. CONCLUSIONS: This is the first evidence that HHT combined with arsenic can synergistically kill LSCs in vitro and in vivo, along with identification of the underlying mechanism, highlighting a potentially effective treatment strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1295-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6631946
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-66319462019-07-24 Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms Tan, Ming Zhang, Qian Yuan, Xiaohong Chen, Yuanzhong Wu, Yong J Exp Clin Cancer Res Research BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to kill leukemia stem cells. We evaluated whether HHT combined with ATO can systematically kill leukemia stem cells (LSCs) and explored the synergistic effect and molecular mechanism. METHODS: CCK-8 was used to detect cell viability. The changes of cell cycle (PI staining), apoptosis (Annexin V/PI) and surface markers (CD34, CD38, CD96, CD45) were detected by flow cytometry. The cells of CD34+ primary leukemia and CD38- KG-1, and TF-1 were separated by flow cytometry. High-throughput mRNA sequencing was used to analysis mRNA level changes after the application of the two drugs. Western blot was used to verify the changes of pathway protein expression. NRG mice were used as the receptor of xenograft model. Histological H&E staining assess the invaded ability of leukemia cells, and laser scanning confocal microscopy evaluated the molecule markers change. RESULTS: HHT and ATO synergistically killed KG-1 (CD34(+)/CD96(+)/CD38(+)/(−)) and Kasumi-1 (CD34(+)/CD38(−)) cells. Their combination had a stronger effect of inducing apoptosis and blocking the cell cycle than HHT or ATO administrator alone, meanwhile significantly reducing the numbers of LSCs. Further, CD34(+)CD38(−) cells in KG-1, KG-1a, TF-1, and primary leukemia cells were more sensitive to HHT and ATO. High-throughput mRNA sequencing suggested that HHT alone could significantly upregulate molecules related to the Notch, P53, and NF-κB signaling pathways. When combined with ATO, HHT further upregulated P53, whereas HHT-induced NF-κB pathway activation was significantly suppressed. Western blot analysis verified the change of protein expression in the above pathways and further demonstrated that GSI, could eliminate these effects. In vivo, HHT combined with ATO significantly reduced the LSC burden, and weakened the expression of LSC markers. CONCLUSIONS: This is the first evidence that HHT combined with arsenic can synergistically kill LSCs in vitro and in vivo, along with identification of the underlying mechanism, highlighting a potentially effective treatment strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1295-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-07-15 /pmc/articles/PMC6631946/ /pubmed/31307525 http://dx.doi.org/10.1186/s13046-019-1295-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Tan, Ming
Zhang, Qian
Yuan, Xiaohong
Chen, Yuanzhong
Wu, Yong
Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title_full Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title_fullStr Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title_full_unstemmed Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title_short Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
title_sort synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631946/
https://www.ncbi.nlm.nih.gov/pubmed/31307525
http://dx.doi.org/10.1186/s13046-019-1295-8
work_keys_str_mv AT tanming synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms
AT zhangqian synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms
AT yuanxiaohong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms
AT chenyuanzhong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms
AT wuyong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms