Cargando…
Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to ki...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631946/ https://www.ncbi.nlm.nih.gov/pubmed/31307525 http://dx.doi.org/10.1186/s13046-019-1295-8 |
_version_ | 1783435638015524864 |
---|---|
author | Tan, Ming Zhang, Qian Yuan, Xiaohong Chen, Yuanzhong Wu, Yong |
author_facet | Tan, Ming Zhang, Qian Yuan, Xiaohong Chen, Yuanzhong Wu, Yong |
author_sort | Tan, Ming |
collection | PubMed |
description | BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to kill leukemia stem cells. We evaluated whether HHT combined with ATO can systematically kill leukemia stem cells (LSCs) and explored the synergistic effect and molecular mechanism. METHODS: CCK-8 was used to detect cell viability. The changes of cell cycle (PI staining), apoptosis (Annexin V/PI) and surface markers (CD34, CD38, CD96, CD45) were detected by flow cytometry. The cells of CD34+ primary leukemia and CD38- KG-1, and TF-1 were separated by flow cytometry. High-throughput mRNA sequencing was used to analysis mRNA level changes after the application of the two drugs. Western blot was used to verify the changes of pathway protein expression. NRG mice were used as the receptor of xenograft model. Histological H&E staining assess the invaded ability of leukemia cells, and laser scanning confocal microscopy evaluated the molecule markers change. RESULTS: HHT and ATO synergistically killed KG-1 (CD34(+)/CD96(+)/CD38(+)/(−)) and Kasumi-1 (CD34(+)/CD38(−)) cells. Their combination had a stronger effect of inducing apoptosis and blocking the cell cycle than HHT or ATO administrator alone, meanwhile significantly reducing the numbers of LSCs. Further, CD34(+)CD38(−) cells in KG-1, KG-1a, TF-1, and primary leukemia cells were more sensitive to HHT and ATO. High-throughput mRNA sequencing suggested that HHT alone could significantly upregulate molecules related to the Notch, P53, and NF-κB signaling pathways. When combined with ATO, HHT further upregulated P53, whereas HHT-induced NF-κB pathway activation was significantly suppressed. Western blot analysis verified the change of protein expression in the above pathways and further demonstrated that GSI, could eliminate these effects. In vivo, HHT combined with ATO significantly reduced the LSC burden, and weakened the expression of LSC markers. CONCLUSIONS: This is the first evidence that HHT combined with arsenic can synergistically kill LSCs in vitro and in vivo, along with identification of the underlying mechanism, highlighting a potentially effective treatment strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1295-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6631946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-66319462019-07-24 Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms Tan, Ming Zhang, Qian Yuan, Xiaohong Chen, Yuanzhong Wu, Yong J Exp Clin Cancer Res Research BACKGROUND: At present, it is generally believed that leukemia stem cells are the source of AML, so the killing of leukemia stem cells has become important. Previous studies have suggested that HHT combined with ATO can synergistically kill U937 cells, and HHT has also demonstrated the ability to kill leukemia stem cells. We evaluated whether HHT combined with ATO can systematically kill leukemia stem cells (LSCs) and explored the synergistic effect and molecular mechanism. METHODS: CCK-8 was used to detect cell viability. The changes of cell cycle (PI staining), apoptosis (Annexin V/PI) and surface markers (CD34, CD38, CD96, CD45) were detected by flow cytometry. The cells of CD34+ primary leukemia and CD38- KG-1, and TF-1 were separated by flow cytometry. High-throughput mRNA sequencing was used to analysis mRNA level changes after the application of the two drugs. Western blot was used to verify the changes of pathway protein expression. NRG mice were used as the receptor of xenograft model. Histological H&E staining assess the invaded ability of leukemia cells, and laser scanning confocal microscopy evaluated the molecule markers change. RESULTS: HHT and ATO synergistically killed KG-1 (CD34(+)/CD96(+)/CD38(+)/(−)) and Kasumi-1 (CD34(+)/CD38(−)) cells. Their combination had a stronger effect of inducing apoptosis and blocking the cell cycle than HHT or ATO administrator alone, meanwhile significantly reducing the numbers of LSCs. Further, CD34(+)CD38(−) cells in KG-1, KG-1a, TF-1, and primary leukemia cells were more sensitive to HHT and ATO. High-throughput mRNA sequencing suggested that HHT alone could significantly upregulate molecules related to the Notch, P53, and NF-κB signaling pathways. When combined with ATO, HHT further upregulated P53, whereas HHT-induced NF-κB pathway activation was significantly suppressed. Western blot analysis verified the change of protein expression in the above pathways and further demonstrated that GSI, could eliminate these effects. In vivo, HHT combined with ATO significantly reduced the LSC burden, and weakened the expression of LSC markers. CONCLUSIONS: This is the first evidence that HHT combined with arsenic can synergistically kill LSCs in vitro and in vivo, along with identification of the underlying mechanism, highlighting a potentially effective treatment strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1295-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-07-15 /pmc/articles/PMC6631946/ /pubmed/31307525 http://dx.doi.org/10.1186/s13046-019-1295-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Tan, Ming Zhang, Qian Yuan, Xiaohong Chen, Yuanzhong Wu, Yong Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title | Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title_full | Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title_fullStr | Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title_full_unstemmed | Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title_short | Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
title_sort | synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631946/ https://www.ncbi.nlm.nih.gov/pubmed/31307525 http://dx.doi.org/10.1186/s13046-019-1295-8 |
work_keys_str_mv | AT tanming synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms AT zhangqian synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms AT yuanxiaohong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms AT chenyuanzhong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms AT wuyong synergistickillingeffectsofhomoharringtonineandarsenictrioxideonacutemyeloidleukemiastemcellsandtheunderlyingmechanisms |