Cargando…
Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds
In this study, we report the synthesis of a novel bio-based material from polyhydroxyalkanoate (PHA) with good shape-memory effect (SME) and rapid recovery. In this PHA-based polyurethane (PHP), telechelic-hydroxylated polyhydroxyalkanoate (PHA-diols) and polyethylene glycol (PEG) were used as soft...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631955/ https://www.ncbi.nlm.nih.gov/pubmed/31212611 http://dx.doi.org/10.3390/polym11061030 |
Sumario: | In this study, we report the synthesis of a novel bio-based material from polyhydroxyalkanoate (PHA) with good shape-memory effect (SME) and rapid recovery. In this PHA-based polyurethane (PHP), telechelic-hydroxylated polyhydroxyalkanoate (PHA-diols) and polyethylene glycol (PEG) were used as soft segments, providing thermo-responsive domains and water-responsive regions, respectively. Thus, PHP possesses good thermal-responsive SME, such as high shape fixing (>99%) and shape recovery ratio (>90%). Upon immersing in water, the storage modulus of PHP decreased considerably owing to disruption of hydrogen bonds in the PHP matrix. Their water-responsive SME is also suitable for rapid shape recovery (less than 10 s). Furthermore, these outstanding properties can trigger shape-morphing, enabling self-folding and self-expansion of shapes into three-dimensional (3D) scaffolds for potential biomedical applications. |
---|