Cargando…

Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System

The hepatitis E virus (HEV) is transmitted via the faecal–oral route in developing countries (genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3 and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute hepatitis globally...

Descripción completa

Detalles Bibliográficos
Autores principales: Schemmerer, Mathias, Johne, Reimar, Erl, Monika, Jilg, Wolfgang, Wenzel, Jürgen J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632007/
https://www.ncbi.nlm.nih.gov/pubmed/31141895
http://dx.doi.org/10.3390/v11060483
_version_ 1783435652441833472
author Schemmerer, Mathias
Johne, Reimar
Erl, Monika
Jilg, Wolfgang
Wenzel, Jürgen J.
author_facet Schemmerer, Mathias
Johne, Reimar
Erl, Monika
Jilg, Wolfgang
Wenzel, Jürgen J.
author_sort Schemmerer, Mathias
collection PubMed
description The hepatitis E virus (HEV) is transmitted via the faecal–oral route in developing countries (genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3 and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute hepatitis globally and immunocompromised patients are particularly at risk. Because of a lack of cell culture systems efficiently propagating wild-type viruses, research on HEV is mostly based on cell culture-adapted isolates carrying uncommon insertions in the hypervariable region (HVR). While optimizing the cell culture system using the cell culture-adapted HEV strain 47832c, we isolated three wild-type strains derived from clinical specimens representing the predominant spectrum of HEV in Europe. The novel isolates 14-16753 (3c), 14-22707 (3e) and 15-22016 (3f-like) replicate to high viral loads of 10(8), 10(9) and 10(6.5) HEV RNA copies/mL at 14 days post-inoculation, respectively. In addition, they could be kept as persistently infected cell cultures with constant high viral loads (~10(9) copies/mL) for more than a year. In contrast to the latest isolates 47832c, LBPR-0379 and Kernow-C1, the new isolates do not carry genome insertions in the HVR. Optimization of HEV cell culture identified amphotericin B, distinct salts and fetal calf serum (FCS) as important medium supplements. Overconfluent cell layers increased infectivity and virus production. PLC/PRF/5, HuH-7-Lunet BLR, A549 and HepG2/C3A supported replication with different efficiencies. The novel strains and optimized cell culture system may be useful for studies on the HEV life cycle, inactivation, specific drug and vaccine development.
format Online
Article
Text
id pubmed-6632007
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-66320072019-08-19 Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System Schemmerer, Mathias Johne, Reimar Erl, Monika Jilg, Wolfgang Wenzel, Jürgen J. Viruses Article The hepatitis E virus (HEV) is transmitted via the faecal–oral route in developing countries (genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3 and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute hepatitis globally and immunocompromised patients are particularly at risk. Because of a lack of cell culture systems efficiently propagating wild-type viruses, research on HEV is mostly based on cell culture-adapted isolates carrying uncommon insertions in the hypervariable region (HVR). While optimizing the cell culture system using the cell culture-adapted HEV strain 47832c, we isolated three wild-type strains derived from clinical specimens representing the predominant spectrum of HEV in Europe. The novel isolates 14-16753 (3c), 14-22707 (3e) and 15-22016 (3f-like) replicate to high viral loads of 10(8), 10(9) and 10(6.5) HEV RNA copies/mL at 14 days post-inoculation, respectively. In addition, they could be kept as persistently infected cell cultures with constant high viral loads (~10(9) copies/mL) for more than a year. In contrast to the latest isolates 47832c, LBPR-0379 and Kernow-C1, the new isolates do not carry genome insertions in the HVR. Optimization of HEV cell culture identified amphotericin B, distinct salts and fetal calf serum (FCS) as important medium supplements. Overconfluent cell layers increased infectivity and virus production. PLC/PRF/5, HuH-7-Lunet BLR, A549 and HepG2/C3A supported replication with different efficiencies. The novel strains and optimized cell culture system may be useful for studies on the HEV life cycle, inactivation, specific drug and vaccine development. MDPI 2019-05-28 /pmc/articles/PMC6632007/ /pubmed/31141895 http://dx.doi.org/10.3390/v11060483 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schemmerer, Mathias
Johne, Reimar
Erl, Monika
Jilg, Wolfgang
Wenzel, Jürgen J.
Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title_full Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title_fullStr Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title_full_unstemmed Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title_short Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
title_sort isolation of subtype 3c, 3e and 3f-like hepatitis e virus strains stably replicating to high viral loads in an optimized cell culture system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632007/
https://www.ncbi.nlm.nih.gov/pubmed/31141895
http://dx.doi.org/10.3390/v11060483
work_keys_str_mv AT schemmerermathias isolationofsubtype3c3eand3flikehepatitisevirusstrainsstablyreplicatingtohighviralloadsinanoptimizedcellculturesystem
AT johnereimar isolationofsubtype3c3eand3flikehepatitisevirusstrainsstablyreplicatingtohighviralloadsinanoptimizedcellculturesystem
AT erlmonika isolationofsubtype3c3eand3flikehepatitisevirusstrainsstablyreplicatingtohighviralloadsinanoptimizedcellculturesystem
AT jilgwolfgang isolationofsubtype3c3eand3flikehepatitisevirusstrainsstablyreplicatingtohighviralloadsinanoptimizedcellculturesystem
AT wenzeljurgenj isolationofsubtype3c3eand3flikehepatitisevirusstrainsstablyreplicatingtohighviralloadsinanoptimizedcellculturesystem