Cargando…

On the Race for More Stretchable and Tough Hydrogels

Hydrogels are tridimensional networks that are able to retain important amounts of water. These soft materials can be obtained through self-assembling processes involving either hydrophilic molecules or polymers, allowing the formation of the corresponding covalently and physically cross-linked netw...

Descripción completa

Detalles Bibliográficos
Autores principales: Grijalvo, Santiago, Eritja, Ramon, Díaz Díaz, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632012/
https://www.ncbi.nlm.nih.gov/pubmed/31035400
http://dx.doi.org/10.3390/gels5020024
Descripción
Sumario:Hydrogels are tridimensional networks that are able to retain important amounts of water. These soft materials can be obtained through self-assembling processes involving either hydrophilic molecules or polymers, allowing the formation of the corresponding covalently and physically cross-linked networks. Although the applicability of hydrogels in biomedicine has been exponentially growing due to their biocompatibility and different responses to stimuli, these materials have exhibited the particular feature of poor mechanical strength, and consequently, are brittle materials with low deformation. Due to this reason, a race has started to obtain more stretchable and tough hydrogels through different approaches. Within this context, this review article describes the most representative strategies and examples involving synthetic polymers with potential for biomedical applications.