Cargando…
Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites
The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632034/ https://www.ncbi.nlm.nih.gov/pubmed/31226743 http://dx.doi.org/10.3390/polym11061064 |
_version_ | 1783435658932518912 |
---|---|
author | Arjmand, Mohammad Sadeghi, Soheil Otero Navas, Ivonne Zamani Keteklahijani, Yalda Dordanihaghighi, Sara Sundararaj, Uttandaraman |
author_facet | Arjmand, Mohammad Sadeghi, Soheil Otero Navas, Ivonne Zamani Keteklahijani, Yalda Dordanihaghighi, Sara Sundararaj, Uttandaraman |
author_sort | Arjmand, Mohammad |
collection | PubMed |
description | The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m(−1) and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays. |
format | Online Article Text |
id | pubmed-6632034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66320342019-08-19 Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites Arjmand, Mohammad Sadeghi, Soheil Otero Navas, Ivonne Zamani Keteklahijani, Yalda Dordanihaghighi, Sara Sundararaj, Uttandaraman Polymers (Basel) Article The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m(−1) and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays. MDPI 2019-06-20 /pmc/articles/PMC6632034/ /pubmed/31226743 http://dx.doi.org/10.3390/polym11061064 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arjmand, Mohammad Sadeghi, Soheil Otero Navas, Ivonne Zamani Keteklahijani, Yalda Dordanihaghighi, Sara Sundararaj, Uttandaraman Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title | Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title_full | Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title_fullStr | Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title_full_unstemmed | Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title_short | Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites |
title_sort | carbon nanotube versus graphene nanoribbon: impact of nanofiller geometry on electromagnetic interference shielding of polyvinylidene fluoride nanocomposites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632034/ https://www.ncbi.nlm.nih.gov/pubmed/31226743 http://dx.doi.org/10.3390/polym11061064 |
work_keys_str_mv | AT arjmandmohammad carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites AT sadeghisoheil carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites AT oteronavasivonne carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites AT zamaniketeklahijaniyalda carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites AT dordanihaghighisara carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites AT sundararajuttandaraman carbonnanotubeversusgraphenenanoribbonimpactofnanofillergeometryonelectromagneticinterferenceshieldingofpolyvinylidenefluoridenanocomposites |