Cargando…

Biobased Engineering Thermoplastics: Poly(butylene 2,5-furandicarboxylate) Blends

Poly(butylene 2,5-furandicarboxylate) (PBF) constitutes a new engineering polyester produced from renewable resources, as it is synthesized from 2,5-furandicarboxylic acid (2,5-FDCA) and 1,4-butanediol (1,4-BD), both formed from sugars coming from biomass. In this research, initially high-molecular-...

Descripción completa

Detalles Bibliográficos
Autores principales: Poulopoulou, Niki, Kantoutsis, George, Bikiaris, Dimitrios N., Achilias, Dimitris S., Kapnisti, Maria, Papageorgiou, George Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632038/
https://www.ncbi.nlm.nih.gov/pubmed/31146490
http://dx.doi.org/10.3390/polym11060937
Descripción
Sumario:Poly(butylene 2,5-furandicarboxylate) (PBF) constitutes a new engineering polyester produced from renewable resources, as it is synthesized from 2,5-furandicarboxylic acid (2,5-FDCA) and 1,4-butanediol (1,4-BD), both formed from sugars coming from biomass. In this research, initially high-molecular-weight PBF was synthesized by applying the melt polycondensation method and using the dimethylester of FDCA as the monomer. Furthermore, five different series of PBF blends were prepared, namely poly(l-lactic acid)–poly(butylene 2,5-furandicarboxylate) (PLA–PBF), poly(ethylene terephthalate)–poly(butylene 2,5-furandicarboxylate) (PET–PBF), poly(propylene terephthalate)–poly(butylene 2,5-furandicarboxylate) (PPT–PBF), poly(butylene 2,6-naphthalenedicarboxylate)-poly(butylene 2,5-furandicarboxylate) (PBN–PBF), and polycarbonate–poly(butylene 2,5-furandicarboxylate) (PC–PBF), by dissolving the polyesters in a trifluoroacetic acid/chloroform mixture (1/4 v/v) followed by coprecipitation as a result of adding the solutions into excess of cold methanol. The wide-angle X-ray diffraction (WAXD) patterns of the as-prepared blends showed that mixtures of crystals of the blend components were formed, except for PC which did not crystallize. In general, a lower degree of crystallinity was observed at intermediate compositions. The differential scanning calorimetry (DSC) heating scans for the melt-quenched samples proved homogeneity in the case of PET–PBF blends. In the remaining cases, the blend components showed distinct T(g)s. In PPT–PBF blends, there was a shift of the T(g)s to intermediate values, showing some partial miscibility. Reactive blending proved to improve compatibility of the PBN–PBF blends.