Cargando…
Automatic Characterization of Retinal Blood Flow Using OCT Angiograms
PURPOSE: To quantitatively characterize the retinal vascular network in healthy and pathological cases using optical coherence tomography angiography (OCTA) images. METHODS: The study included 56 eyes of 28 patients as follows: 26 healthy, 20 with diabetic retinopathy (DR), 6 with age-related macula...
Autores principales: | Aharony, Omer, Gal-Or, Orly, Polat, Asaf, Nahum, Yoav, Weinberger, Dov, Zimmer, Yair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632182/ https://www.ncbi.nlm.nih.gov/pubmed/31338254 http://dx.doi.org/10.1167/tvst.8.4.6 |
Ejemplares similares
-
Segmentation and Automatic Identification of Vasculature in Coronary Angiograms
por: Liu, Yaofang, et al.
Publicado: (2021) -
An Open-Source Deep Learning Network for Reconstruction of High-Resolution OCT Angiograms of Retinal Intermediate and Deep Capillary Plexuses
por: Gao, Min, et al.
Publicado: (2021) -
Automatic Vasculature Identification in Coronary Angiograms by Adaptive Geometrical Tracking
por: Xiao, Ruoxiu, et al.
Publicado: (2013) -
A Deep Learning Network for Classifying Arteries and Veins in Montaged Widefield OCT Angiograms
por: Gao, Min, et al.
Publicado: (2022) -
Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking
por: Shoujun, Zhou, et al.
Publicado: (2010)