Cargando…
A machine-learning approach for accurate detection of copy number variants from exome sequencing
Copy number variants (CNVs) are a major cause of several genetic disorders, making their detection an essential component of genetic analysis pipelines. Current methods for detecting CNVs from exome-sequencing data are limited by high false-positive rates and low concordance because of inherent bias...
Autores principales: | Pounraja, Vijay Kumar, Jayakar, Gopal, Jensen, Matthew, Kelkar, Neil, Girirajan, Santhosh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633262/ https://www.ncbi.nlm.nih.gov/pubmed/31171634 http://dx.doi.org/10.1101/gr.245928.118 |
Ejemplares similares
-
A general framework for identifying oligogenic combinations of rare variants in complex disorders
por: Pounraja, Vijay Kumar, et al.
Publicado: (2022) -
Polishing copy number variant calls on exome sequencing data via deep learning
por: Özden, Furkan, et al.
Publicado: (2022) -
Accurate in silico confirmation of rare copy number variant calls from exome sequencing data using transfer learning
por: Tan, Renjie, et al.
Publicado: (2022) -
EXCAVATOR: detecting copy number variants from whole-exome sequencing data
por: Magi, Alberto, et al.
Publicado: (2013) -
An interaction-based model for neuropsychiatric features of copy-number variants
por: Jensen, Matthew, et al.
Publicado: (2019)